wondervictor's picture
Update autoregressive/models/generate.py
24c3c11 verified
raw
history blame
9.77 kB
# Modified from:
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch._dynamo.config
import torch._inductor.config
import copy
import time
# torch._inductor.config.coordinate_descent_tuning = True
# torch._inductor.config.triton.unique_kernel_names = True
# torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
def top_k_top_p_filtering(
logits,
top_k: int = 0,
top_p: float = 1.0,
filter_value: float = -float("Inf"),
min_tokens_to_keep: int = 1,
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
# import pdb;pdb.set_trace()
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = filter_value
return logits
def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True):
logits = logits[:, -1, :] / max(temperature, 1e-5)
if top_k > 0 or top_p < 1.0:
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = F.softmax(logits, dim=-1)
# values, indices = torch.max(probs, dim=1, keepdim=True)
# mask = (probs == values).float()
# probs = probs * (1 - mask)
# values, indices = torch.max(probs, dim=1, keepdim=True)
# mask = (probs == values).float()
# probs = probs * (1 - mask)
if sample_logits:
# add to fix 'nan' and 'inf'
probs = torch.where(torch.isnan(probs), torch.tensor(0.0), probs)
probs = torch.clamp(probs, min=0, max=None)
print(f'inf:{torch.any(torch.isinf(probs))}')
print(f'nan: {torch.any(torch.isnan(probs))}')
idx = torch.multinomial(probs, num_samples=1)
else:
_, idx = torch.topk(probs, k=1, dim=-1)
return idx, probs
def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs):
logits = logits / max(temperature, 1e-5)
if top_k > 0 or top_p < 1.0:
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
probs = torch.nn.functional.softmax(logits, dim=-1)
return probs
def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, condition:torch.Tensor, **sampling_kwargs):
if cfg_scale > 1.0:
logits, _ = model(None, cond_idx, input_pos, condition=condition)
print(logits.sum())
print(logits)
logits_combined = logits
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
else:
logits, _ = model(None, cond_idx, input_pos, condition=condition)
return sample(logits, **sampling_kwargs)[0]
def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, condition: torch.Tensor, **sampling_kwargs):
assert input_pos.shape[-1] == 1
if cfg_scale > 1.0:
x_combined = torch.cat([x, x])
logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos, condition=condition)
logits_combined = logits
cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0)
if cfg_flag:
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
else:
logits = cond_logits
else:
logits, _ = model(x, cond_idx=None, input_pos=input_pos, condition=None)
return sample(logits, **sampling_kwargs)
def decode_n_tokens(
model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int,
cfg_scale: float, cfg_interval: int, condition: torch.Tensor,
**sampling_kwargs):
new_tokens, new_probs = [], []
cfg_flag = True
for i in range(num_new_tokens):
with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here
if cfg_interval > -1 and i > cfg_interval:
cfg_flag = False
next_token, next_prob = decode_one_token(
model, cur_token, input_pos, cfg_scale, cfg_flag, condition=condition, **sampling_kwargs
)
input_pos += 1
new_tokens.append(next_token.clone())
new_probs.append(next_prob.clone())
cur_token = next_token.view(-1, 1)
return new_tokens, new_probs
@torch.no_grad()
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
if condition is not None:
condition = model.adapter(condition)
condition = model.adapter_mlp(condition)
if model.model_type == 'c2i':
if cfg_scale > 1.0:
cond_null = torch.ones_like(cond) * model.num_classes
cond_combined = torch.cat([cond, cond_null])
if condition is not None:
condition_null = torch.zeros_like(condition)
condition_combined = torch.cat((condition, condition_null), dim=0)
else:
condition_combined = None
else:
cond_combined = cond
if condition is not None:
condition_combined = condition
else:
condition_combined = None
T = 1+condition_token_nums
elif model.model_type == 't2i':
if cfg_scale > 1.0:
cond_null = torch.zeros_like(cond) + model.cls_embedding.uncond_embedding
cond_combined = torch.cat([cond, cond_null])
if condition is not None:
condition_null = torch.zeros_like(condition)
condition_combined = torch.cat((condition, condition_null), dim=0)
else:
condition_combined = None
else:
cond_combined = cond
if condition is not None:
condition_combined = condition
else:
condition_combined = None
T = cond.shape[1]
else:
raise Exception("please check model type")
T_new = T + max_new_tokens
max_seq_length = T_new
max_batch_size = cond.shape[0]
device = cond.device
with torch.device(device):
max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size
model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype)
if emb_masks is not None:
assert emb_masks.shape[0] == max_batch_size
assert emb_masks.shape[-1] == T
if cfg_scale > 1.0:
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1)
else:
model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1)
eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device)
model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix
# create an empty tensor of the expected final shape and fill in the current tokens
seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device)
input_pos = torch.arange(0, T, device=device)
next_token = prefill(model, cond_combined, input_pos, cfg_scale, condition_combined, **sampling_kwargs)
seq[:, T:T+1] = next_token
input_pos = torch.tensor([T], device=device, dtype=torch.int)
generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, condition=condition_combined, **sampling_kwargs)
seq[:, T+1:] = torch.cat(generated_tokens, dim=1)
return seq[:, T:]