Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from tokenizer.vqgan.layer import Encoder, Decoder | |
from tokenizer.vqgan.quantize import VectorQuantizer2 as VectorQuantizer | |
VQGAN_FROM_TAMING = { | |
'vqgan_imagenet_f16_1024': ( | |
'tokenizer/vqgan/configs/vqgan_imagenet_f16_1024.yaml', | |
'pretrained_models/vqgan_imagenet_f16_1024/ckpts/last.pth'), | |
'vqgan_imagenet_f16_16384': ( | |
'tokenizer/vqgan/configs/vqgan_imagenet_f16_16384.yaml', | |
'pretrained_models/vqgan_imagenet_f16_16384/ckpts/last.pth'), | |
'vqgan_openimage_f8_256': ( | |
'tokenizer/vqgan/configs/vqgan_openimage_f8_256.yaml', | |
'pretrained_models/vq-f8-n256/model.pth'), | |
'vqgan_openimage_f8_16384': ( | |
'tokenizer/vqgan/configs/vqgan_openimage_f8_16384.yaml', | |
'pretrained_models/vq-f8/model.pth'), | |
} | |
class VQModel(nn.Module): | |
def __init__(self, | |
ddconfig, | |
n_embed, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
remap=None, | |
sane_index_shape=False, # tell vector quantizer to return indices as bhw | |
**kwargs, | |
): | |
super().__init__() | |
self.image_key = image_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25, | |
remap=remap, sane_index_shape=sane_index_shape) | |
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
self.image_key = image_key | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels)==int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
def init_from_ckpt(self, path, ignore_keys=list(), logging=True): | |
model_weight = torch.load(path, map_location="cpu")["state_dict"] | |
keys = list(model_weight.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del model_weight[k] | |
missing, unexpected = self.load_state_dict(model_weight, strict=False) | |
if logging: | |
print(f"Restored from {path}") | |
print(f"Missing Keys in State Dict: {missing}") | |
print(f"Unexpected Keys in State Dict: {unexpected}") | |
def encode(self, x): | |
h = self.encoder(x) | |
h = self.quant_conv(h) | |
quant, emb_loss, info = self.quantize(h) | |
return quant, emb_loss, info | |
def decode(self, quant): | |
quant = self.post_quant_conv(quant) | |
dec = self.decoder(quant) | |
return dec | |
def decode_code(self, code_b, shape, channel_first=True): | |
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) | |
dec = self.decode(quant_b) | |
return dec | |
def forward(self, input): | |
quant, diff, _ = self.encode(input) | |
dec = self.decode(quant) | |
return dec, diff | |