Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
torch.set_float32_matmul_precision('high') | |
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed | |
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed | |
from torchvision.utils import save_image | |
import os | |
import sys | |
current_directory = os.getcwd() | |
sys.path.append(current_directory) | |
import time | |
import argparse | |
from tokenizer.tokenizer_image.vq_model import VQ_models | |
from language.t5 import T5Embedder | |
from autoregressive.models.gpt_t2i import GPT_models | |
from autoregressive.models.generate import generate | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
from dataset.t2i_control import build_t2i_control_code | |
from accelerate import Accelerator | |
from dataset.build import build_dataset | |
from pathlib import Path | |
from accelerate.utils import ProjectConfiguration, set_seed | |
import torch.nn.functional as F | |
from condition.canny import CannyDetector | |
from condition.hed import HEDdetector | |
import numpy as np | |
from PIL import Image | |
from condition.lineart import LineArt | |
import cv2 | |
from transformers import DPTImageProcessor, DPTForDepthEstimation | |
from condition.midas.depth import MidasDetector | |
def resize_image_to_16_multiple(image_path, condition_type='seg'): | |
image = Image.open(image_path) | |
width, height = image.size | |
if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32 | |
new_width = (width + 31) // 32 * 32 | |
new_height = (height + 31) // 32 * 32 | |
else: | |
new_width = (width + 15) // 16 * 16 | |
new_height = (height + 15) // 16 * 16 | |
resized_image = image.resize((new_width, new_height)) | |
return resized_image | |
def main(args): | |
# Setup PyTorch: | |
torch.manual_seed(args.seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# create and load model | |
vq_model = VQ_models[args.vq_model]( | |
codebook_size=args.codebook_size, | |
codebook_embed_dim=args.codebook_embed_dim) | |
vq_model.to(device) | |
vq_model.eval() | |
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") | |
vq_model.load_state_dict(checkpoint["model"]) | |
del checkpoint | |
print(f"image tokenizer is loaded") | |
# create and load gpt model | |
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] | |
latent_size = args.image_size // args.downsample_size | |
gpt_model = GPT_models[args.gpt_model]( | |
block_size=latent_size ** 2, | |
cls_token_num=args.cls_token_num, | |
model_type=args.gpt_type, | |
condition_type=args.condition_type, | |
).to(device=device, dtype=precision) | |
_, file_extension = os.path.splitext(args.gpt_ckpt) | |
if file_extension.lower() == '.safetensors': | |
from safetensors.torch import load_file | |
model_weight = load_file(args.gpt_ckpt) | |
gpt_model.load_state_dict(model_weight, strict=False) | |
gpt_model.eval() | |
else: | |
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") | |
if "model" in checkpoint: # ddp | |
model_weight = checkpoint["model"] | |
elif "module" in checkpoint: # deepspeed | |
model_weight = checkpoint["module"] | |
elif "state_dict" in checkpoint: | |
model_weight = checkpoint["state_dict"] | |
else: | |
raise Exception("please check model weight") | |
gpt_model.load_state_dict(model_weight, strict=False) | |
gpt_model.eval() | |
del checkpoint | |
print(f"gpt model is loaded") | |
if args.compile: | |
print(f"compiling the model...") | |
gpt_model = torch.compile( | |
gpt_model, | |
mode="reduce-overhead", | |
fullgraph=True | |
) # requires PyTorch 2.0 (optional) | |
else: | |
print(f"no need to compile model in demo") | |
assert os.path.exists(args.t5_path) | |
t5_model = T5Embedder( | |
device=device, | |
local_cache=True, | |
cache_dir=args.t5_path, | |
dir_or_name=args.t5_model_type, | |
torch_dtype=precision, | |
model_max_length=args.t5_feature_max_len, | |
) | |
if args.condition_type == 'canny': | |
get_control = CannyDetector() | |
elif args.condition_type == 'hed': | |
get_control = HEDdetector().to(device).eval() | |
elif args.condition_type == 'lineart': | |
get_control = LineArt() | |
get_control.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu'))) | |
get_control.to(device) | |
elif args.condition_type == 'depth': | |
processor = DPTImageProcessor.from_pretrained("condition/ckpts/dpt_large") | |
model_large = DPTForDepthEstimation.from_pretrained("condition/ckpts/dpt_large").to(device) | |
model = MidasDetector(device=device) | |
with torch.no_grad(): | |
condition_img = resize_image_to_16_multiple(args.condition_path, args.condition_type) | |
W, H = condition_img.size | |
print(H,W) | |
if args.condition_type == 'seg': | |
condition_img = torch.from_numpy(np.array(condition_img)) | |
condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2,1,1,1) | |
elif args.condition_type == 'canny': | |
condition_img = get_control(np.array(condition_img)) | |
condition_img = torch.from_numpy(condition_img[None,None,...]).repeat(2,3,1,1) | |
elif args.condition_type == 'hed': | |
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device)) | |
condition_img = condition_img.unsqueeze(1).repeat(2,3,1,1) | |
elif args.condition_type == 'lineart': | |
condition_img = get_control(torch.from_numpy(np.array(condition_img)).permute(2,0,1).unsqueeze(0).to(device).float()) | |
condition_img = condition_img.repeat(2,3,1,1) * 255 | |
elif args.condition_type == 'depth': | |
images = condition_img | |
if H == W: | |
inputs = processor(images=images, return_tensors="pt", size=(H,W)).to(device) | |
outputs = model_large(**inputs) | |
condition_img = outputs.predicted_depth | |
condition_img = (condition_img * 255 / condition_img.max()) | |
else: | |
condition_img = torch.from_numpy(model(torch.from_numpy(np.array(condition_img)).to(device))).unsqueeze(0) | |
condition_img = condition_img.unsqueeze(0).repeat(2,3,1,1) | |
condition_img = condition_img.to(device) | |
condition_img = 2*(condition_img/255 - 0.5) | |
prompts = [args.prompt if args.prompt is not None else "a high-quality image"] | |
prompts = prompts * 2 | |
caption_embs, emb_masks = t5_model.get_text_embeddings(prompts) | |
if not args.no_left_padding: | |
print(f"processing left-padding...") | |
# a naive way to implement left-padding | |
new_emb_masks = torch.flip(emb_masks, dims=[-1]) | |
new_caption_embs = [] | |
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): | |
valid_num = int(emb_mask.sum().item()) | |
print(f' prompt {idx} token len: {valid_num}') | |
new_caption_emb = torch.cat([caption_emb[valid_num:],caption_emb[:valid_num]]) | |
new_caption_embs.append(new_caption_emb) | |
new_caption_embs = torch.stack(new_caption_embs) | |
else: | |
new_caption_embs, new_emb_masks = caption_embs, emb_masks | |
c_indices = new_caption_embs * new_emb_masks[:,:, None] | |
c_emb_masks = new_emb_masks | |
qzshape = [len(c_indices), args.codebook_embed_dim, H//args.downsample_size, W//args.downsample_size] | |
t1 = time.time() | |
index_sample = generate( | |
gpt_model, c_indices, (H//args.downsample_size)*(W//args.downsample_size),#latent_size ** 2, | |
c_emb_masks, condition=condition_img.to(precision), | |
cfg_scale=args.cfg_scale, | |
temperature=args.temperature, top_k=args.top_k, | |
top_p=args.top_p, sample_logits=True, | |
) | |
sampling_time = time.time() - t1 | |
print(f"Full sampling takes about {sampling_time:.2f} seconds.") | |
t2 = time.time() | |
print(index_sample.shape) | |
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1] | |
decoder_time = time.time() - t2 | |
print(f"decoder takes about {decoder_time:.2f} seconds.") | |
samples = torch.cat((condition_img[0:1], samples), dim=0) | |
save_image(samples, f"sample/example/sample_t2i_MR_{args.condition_type}.png", nrow=4, normalize=True, value_range=(-1, 1)) | |
print(f"image is saved to sample/example/sample_t2i_MR_{args.condition_type}.png") | |
print(prompts) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--t5-path", type=str, default='checkpoints/t5-ckpt') | |
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl') | |
parser.add_argument("--t5-feature-max-len", type=int, default=120) | |
parser.add_argument("--t5-feature-dim", type=int, default=2048) | |
parser.add_argument("--no-left-padding", action='store_true', default=False) | |
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL") | |
parser.add_argument("--gpt-ckpt", type=str, default=None) | |
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image") | |
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input") | |
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) | |
parser.add_argument("--compile", action='store_true', default=False) | |
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") | |
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") | |
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") | |
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") | |
parser.add_argument("--image-size", type=int, choices=[256, 320, 384, 400, 448, 512, 576, 640, 704, 768], default=768) | |
parser.add_argument("--image-H", type=int, default=512) | |
parser.add_argument("--image-W", type=int, default=512) | |
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) | |
parser.add_argument("--cfg-scale", type=float, default=4) | |
parser.add_argument("--seed", type=int, default=0) | |
parser.add_argument("--top-k", type=int, default=2000, help="top-k value to sample with") | |
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") | |
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") | |
parser.add_argument("--mixed-precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) | |
parser.add_argument("--condition-type", type=str, choices=['seg', 'canny', 'hed', 'lineart', 'depth'], default="canny") | |
parser.add_argument("--prompt", type=str, default='a high-quality image') | |
parser.add_argument("--condition-path", type=str, default='condition/example/t2i/multigen/landscape.png') | |
args = parser.parse_args() | |
main(args) | |