ControlAR / autoregressive /sample /sample_t2i_ddp.py
wondervictor
update README
2422035
raw
history blame
10.7 kB
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
setattr(torch.nn.Linear, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
setattr(torch.nn.LayerNorm, 'reset_parameters', lambda self: None) # disable default parameter init for faster speed
import torch.nn.functional as F
import torch.distributed as dist
import os
import math
import json
import argparse
import pandas as pd
from tqdm import tqdm
from PIL import Image
from tokenizer.tokenizer_image.vq_model import VQ_models
from language.t5 import T5Embedder
from autoregressive.models.gpt import GPT_models
from autoregressive.models.generate import generate
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def main(args):
# Setup PyTorch:
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
# create and load model
vq_model = VQ_models[args.vq_model](
codebook_size=args.codebook_size,
codebook_embed_dim=args.codebook_embed_dim)
vq_model.to(device)
vq_model.eval()
checkpoint = torch.load(args.vq_ckpt, map_location="cpu")
vq_model.load_state_dict(checkpoint["model"])
del checkpoint
print(f"image tokenizer is loaded")
# create and load gpt model
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision]
latent_size = args.image_size // args.downsample_size
gpt_model = GPT_models[args.gpt_model](
block_size=latent_size ** 2,
cls_token_num=args.cls_token_num,
model_type=args.gpt_type,
).to(device=device, dtype=precision)
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu")
if "model" in checkpoint: # ddp
model_weight = checkpoint["model"]
elif "module" in checkpoint: # deepspeed
model_weight = checkpoint["module"]
elif "state_dict" in checkpoint:
model_weight = checkpoint["state_dict"]
else:
raise Exception("please check model weight")
gpt_model.load_state_dict(model_weight, strict=False)
gpt_model.eval()
del checkpoint
print(f"gpt model is loaded")
if args.compile:
print(f"compiling the model...")
gpt_model = torch.compile(
gpt_model,
mode="reduce-overhead",
fullgraph=True
) # requires PyTorch 2.0 (optional)
else:
print(f"no need to compile model in demo")
assert os.path.exists(args.t5_path)
t5_model = T5Embedder(
device=device,
local_cache=True,
cache_dir=args.t5_path,
dir_or_name=args.t5_model_type,
torch_dtype=precision,
model_max_length=args.t5_feature_max_len,
)
print(f"t5 model is loaded")
# Create folder to save samples:
model_string_name = args.gpt_model.replace("/", "-")
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "")
prompt_name = args.prompt_csv.split('/')[-1].split('.')[0].lower()
folder_name = f"{model_string_name}-{ckpt_string_name}-{prompt_name}-size-{args.image_size}-size-{args.image_size}-{args.vq_model}-" \
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(f"{sample_folder_dir}/images", exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}/images")
dist.barrier()
df = pd.read_csv(args.prompt_csv, delimiter='\t')
prompt_list = df['Prompt'].tolist()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
num_fid_samples = min(args.num_fid_samples, len(prompt_list))
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(num_fid_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Select text prompt
prompt_batch = []
for i in range(n):
index = i * dist.get_world_size() + rank + total
prompt_batch.append(prompt_list[index] if index < len(prompt_list) else "a cute dog")
# Sample inputs:
caption_embs, emb_masks = t5_model.get_text_embeddings(prompt_batch)
if not args.no_left_padding:
new_emb_masks = torch.flip(emb_masks, dims=[-1])
new_caption_embs = []
for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)):
valid_num = int(emb_mask.sum().item())
# prompt_cur = prompt_batch[idx]
# print(f' prompt {idx} token len: {valid_num} : {prompt_cur}')
new_caption_emb = torch.cat([caption_emb[valid_num:], caption_emb[:valid_num]])
new_caption_embs.append(new_caption_emb)
new_caption_embs = torch.stack(new_caption_embs)
else:
new_caption_embs, new_emb_masks = caption_embs, emb_masks
c_indices = new_caption_embs * new_emb_masks[:,:, None]
c_emb_masks = new_emb_masks
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size]
index_sample = generate(
gpt_model, c_indices, latent_size ** 2,
c_emb_masks,
cfg_scale=args.cfg_scale,
temperature=args.temperature, top_k=args.top_k,
top_p=args.top_p, sample_logits=True,
)
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1]
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(f"{sample_folder_dir}/images/{index:06d}.png")
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
if rank == 0:
# Save infer result in a jsonl file
json_items = []
for idx, prompt in enumerate(prompt_list):
image_path = os.path.join(sample_folder_dir, "images", f"{idx:06d}.png")
json_items.append({"text": prompt, "image_path": image_path})
res_jsonl_path = os.path.join(sample_folder_dir, "result.jsonl")
print(f"Save jsonl to {res_jsonl_path}...")
with open(res_jsonl_path, "w") as f:
for item in json_items:
f.write(json.dumps(item) + "\n")
# Save captions to txt
caption_path = os.path.join(sample_folder_dir, "captions.txt")
print(f"Save captions to {caption_path}...")
with open(caption_path, "w") as f:
for item in prompt_list:
f.write(f"{item}\n")
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--prompt-csv", type=str, default='evaluations/t2i/PartiPrompts.tsv')
parser.add_argument("--t5-path", type=str, default='pretrained_models/t5-ckpt')
parser.add_argument("--t5-model-type", type=str, default='flan-t5-xl')
parser.add_argument("--t5-feature-max-len", type=int, default=120)
parser.add_argument("--t5-feature-dim", type=int, default=2048)
parser.add_argument("--no-left-padding", action='store_true', default=False)
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-XL")
parser.add_argument("--gpt-ckpt", type=str, default=None)
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="t2i", help="class->image or text->image")
parser.add_argument("--cls-token-num", type=int, default=120, help="max token number of condition input")
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"])
parser.add_argument("--compile", action='store_true', default=False)
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16")
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model")
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization")
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization")
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=512)
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=7.5)
parser.add_argument("--sample-dir", type=str, default="samples_parti", help="samples_coco or samples_parti")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--num-fid-samples", type=int, default=30000)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--top-k", type=int, default=1000, help="top-k value to sample with")
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with")
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with")
args = parser.parse_args()
main(args)