Spaces:
Running
on
Zero
Running
on
Zero
# Modified from: | |
# VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py | |
# DiT: https://github.com/facebookresearch/DiT/blob/main/models.py | |
# nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py | |
# llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py | |
# gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py | |
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
from dataclasses import dataclass | |
from typing import Optional, List | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from utils.drop_path import DropPath | |
# from autoregressive.models.vit_adapter import ViT_Adapter | |
from autoregressive.models.dinov2_adapter import Dinov2_Adapter | |
def get_causal_mask(seq_length): | |
mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool) | |
mask = mask.masked_fill(mask, float('-inf')) | |
mask = mask.masked_fill(~mask, float(0.0)) | |
return mask | |
def find_multiple(n: int, k: int): | |
if n % k == 0: | |
return n | |
return n + k - (n % k) | |
class ModelArgs: | |
dim: int = 4096 | |
n_layer: int = 32 | |
n_head: int = 32 | |
n_kv_head: Optional[int] = None | |
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 | |
ffn_dim_multiplier: Optional[float] = None | |
rope_base: float = 10000 | |
norm_eps: float = 1e-5 | |
initializer_range: float = 0.02 | |
token_dropout_p: float = 0.1 | |
attn_dropout_p: float = 0.0 | |
resid_dropout_p: float = 0.1 | |
ffn_dropout_p: float = 0.1 | |
drop_path_rate: float = 0.0 | |
num_classes: int = 1000 | |
caption_dim: int = 2048 | |
class_dropout_prob: float = 0.1 | |
model_type: str = 'c2i' | |
vocab_size: int = 16384 | |
cls_token_num: int = 1 | |
block_size: int = 256 | |
max_batch_size: int = 32 | |
max_seq_len: int = 2048 | |
adapter_size: str = 'small' | |
condition_type: str = 'canny' | |
################################################################################# | |
# Embedding Layers for Class Labels # | |
################################################################################# | |
class LabelEmbedder(nn.Module): | |
""" | |
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, num_classes, hidden_size, dropout_prob): | |
super().__init__() | |
use_cfg_embedding = dropout_prob > 0 | |
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) | |
self.num_classes = num_classes | |
self.dropout_prob = dropout_prob | |
def token_drop(self, labels, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
labels = torch.where(drop_ids, self.num_classes, labels) | |
return labels, drop_ids | |
def forward(self, labels, train, force_drop_ids=None): | |
use_dropout = self.dropout_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
labels,drop_ids = self.token_drop(labels, force_drop_ids) | |
embeddings = self.embedding_table(labels).unsqueeze(1) | |
if (train and use_dropout) or (force_drop_ids is not None): | |
return embeddings,drop_ids | |
else: | |
return embeddings | |
class ConditionEmbedder(nn.Module): | |
""" | |
Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384): | |
super().__init__() | |
self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size) | |
self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None, drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
if drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption) | |
return caption | |
def forward(self, caption, train, force_drop_ids=None, drop_ids=None): | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption = self.token_drop(caption, force_drop_ids, drop_ids) | |
embeddings = self.cap_proj(caption) | |
return embeddings | |
################################################################################# | |
# Embedding Layers for Text Feature # | |
################################################################################# | |
class CaptionEmbedder(nn.Module): | |
""" | |
Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance. | |
""" | |
def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120): | |
super().__init__() | |
self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size) | |
self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) | |
self.uncond_prob = uncond_prob | |
def token_drop(self, caption, force_drop_ids=None): | |
""" | |
Drops labels to enable classifier-free guidance. | |
""" | |
if force_drop_ids is None: | |
drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob | |
else: | |
drop_ids = force_drop_ids == 1 | |
caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption) | |
return caption, drop_ids | |
def forward(self, caption, train, force_drop_ids=None): | |
use_dropout = self.uncond_prob > 0 | |
if (train and use_dropout) or (force_drop_ids is not None): | |
caption, drop_ids = self.token_drop(caption, force_drop_ids) | |
embeddings = self.cap_proj(caption) | |
if (train and use_dropout) or (force_drop_ids is not None): | |
return embeddings,drop_ids | |
else: | |
return embeddings | |
class MLP(nn.Module): | |
def __init__(self, in_features, hidden_features, out_features): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=False) | |
self.act = nn.GELU(approximate='tanh') | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=False) | |
nn.init.zeros_(self.fc1.weight) | |
nn.init.zeros_(self.fc2.weight) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
return x | |
################################################################################# | |
# GPT Model # | |
################################################################################# | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
class FeedForward(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
hidden_dim = 4 * config.dim | |
hidden_dim = int(2 * hidden_dim / 3) | |
# custom dim factor multiplier | |
if config.ffn_dim_multiplier is not None: | |
hidden_dim = int(config.ffn_dim_multiplier * hidden_dim) | |
hidden_dim = find_multiple(hidden_dim, config.multiple_of) | |
self.w1 = nn.Linear(config.dim, hidden_dim, bias=False) | |
self.w3 = nn.Linear(config.dim, hidden_dim, bias=False) | |
self.w2 = nn.Linear(hidden_dim, config.dim, bias=False) | |
self.ffn_dropout = nn.Dropout(config.ffn_dropout_p) | |
def forward(self, x): | |
return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) | |
class KVCache(nn.Module): | |
def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype): | |
super().__init__() | |
cache_shape = (max_batch_size, n_head, max_seq_length, head_dim) | |
self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) | |
self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) | |
def update(self, input_pos, k_val, v_val): | |
# input_pos: [S], k_val: [B, H, S, D] | |
assert input_pos.shape[0] == k_val.shape[2] | |
k_out = self.k_cache | |
v_out = self.v_cache | |
k_out[:, :, input_pos] = k_val | |
v_out[:, :, input_pos] = v_val | |
return k_out, v_out | |
class Attention(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
assert config.dim % config.n_head == 0 | |
self.dim = config.dim | |
self.head_dim = config.dim // config.n_head | |
self.n_head = config.n_head | |
self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head | |
total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim | |
# key, query, value projections for all heads, but in a batch | |
self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False) | |
self.wo = nn.Linear(config.dim, config.dim, bias=False) | |
self.kv_cache = None | |
# regularization | |
self.attn_dropout_p = config.attn_dropout_p | |
self.resid_dropout = nn.Dropout(config.resid_dropout_p) | |
def forward( | |
self, x: torch.Tensor, freqs_cis: torch.Tensor = None, | |
input_pos: Optional[torch.Tensor] = None, | |
mask: Optional[torch.Tensor] = None | |
): | |
bsz, seqlen, _ = x.shape | |
kv_size = self.n_kv_head * self.head_dim | |
xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) | |
xq = xq.view(bsz, seqlen, self.n_head, self.head_dim) | |
xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim) | |
xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim) | |
xq = apply_rotary_emb(xq, freqs_cis) | |
xk = apply_rotary_emb(xk, freqs_cis) | |
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) | |
if self.kv_cache is not None: | |
keys, values = self.kv_cache.update(input_pos, xk, xv) | |
else: | |
keys, values = xk, xv | |
keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1) | |
values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1) | |
output = F.scaled_dot_product_attention( | |
xq, keys, values, | |
attn_mask=mask, | |
is_causal=True if mask is None else False, # is_causal=False is for KV cache | |
dropout_p=self.attn_dropout_p if self.training else 0) | |
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) | |
output = self.resid_dropout(self.wo(output)) | |
return output | |
class TransformerBlock(nn.Module): | |
def __init__(self, config: ModelArgs, drop_path: float): | |
super().__init__() | |
self.attention = Attention(config) | |
self.feed_forward = FeedForward(config) | |
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward( | |
self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None): | |
h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask)) | |
out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) | |
return out | |
class Transformer(nn.Module): | |
def __init__(self, config: ModelArgs): | |
super().__init__() | |
self.config = config | |
self.vocab_size = config.vocab_size | |
self.n_layer = config.n_layer | |
self.block_size = config.block_size | |
self.num_classes = config.num_classes | |
self.model_type = config.model_type | |
self.cls_token_num = config.cls_token_num | |
self.layer_internal = config.n_layer // 3 | |
# self.adapter = Adapter(output_dim=768) | |
# self.adapter = ViT_Adapter() | |
# self.adapter = DeiT_Adapter() | |
self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type) | |
# self.adapter = EVA_Adapter() | |
if config.adapter_size == "small": | |
self.adapter_mlp = MLP(384, config.dim, config.dim) | |
elif config.adapter_size == 'base': | |
self.adapter_mlp = MLP(768, config.dim, config.dim) | |
if self.model_type == 'c2i': | |
self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob) | |
elif self.model_type == 't2i': | |
self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob) | |
else: | |
raise Exception("please check model type") | |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) | |
self.tok_dropout = nn.Dropout(config.token_dropout_p) | |
self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim) | |
self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size) | |
self.condition_layers = torch.nn.ModuleList() | |
for layer_id in range(3): | |
self.condition_layers.append(MLP(config.dim,config.dim,config.dim)) | |
# transformer blocks | |
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)] | |
self.layers = torch.nn.ModuleList() | |
for layer_id in range(config.n_layer): | |
self.layers.append(TransformerBlock(config, dpr[layer_id])) | |
# output layer | |
self.norm = RMSNorm(config.dim, eps=config.norm_eps) | |
self.output = nn.Linear(config.dim, config.vocab_size, bias=False) | |
# 2d rotary pos embedding | |
grid_size = int(self.block_size ** 0.5) | |
assert grid_size * grid_size == self.block_size | |
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) | |
# KVCache | |
self.max_batch_size = -1 | |
self.max_seq_length = -1 | |
self.initialize_weights() | |
self.condition_token = None | |
self.mask = get_causal_mask(256) | |
self.global_token = None | |
def initialize_weights(self): | |
# Initialize nn.Linear and nn.Embedding | |
self.apply(self._init_weights) | |
# Zero-out output layers: | |
nn.init.constant_(self.output.weight, 0) | |
def _init_weights(self, module): | |
std = self.config.initializer_range | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
def setup_caches(self, max_batch_size, max_seq_length, dtype): | |
# if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: | |
# return | |
head_dim = self.config.dim // self.config.n_head | |
max_seq_length = find_multiple(max_seq_length, 8) # | |
self.max_seq_length = max_seq_length | |
self.max_batch_size = max_batch_size | |
for b in self.layers: | |
b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype) | |
causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)) | |
self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1) | |
grid_size = int(self.config.block_size ** 0.5) | |
assert grid_size * grid_size == self.block_size | |
self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) | |
def forward( | |
self, | |
idx: torch.Tensor, | |
cond_idx: torch.Tensor, # cond_idx_or_embed | |
input_pos: Optional[torch.Tensor] = None, | |
targets: Optional[torch.Tensor] = None, | |
mask: Optional[torch.Tensor] = None, | |
valid: Optional[torch.Tensor] = None, | |
condition: Optional[torch.Tensor] = None | |
): | |
if idx is not None and cond_idx is not None: # training or naive inference | |
cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training) | |
cond_embeddings = cond_embeddings[:,:self.cls_token_num] | |
token_embeddings = self.tok_embeddings(idx) | |
if condition is not None: | |
condition_embeddings = self.adapter(condition) | |
condition_embeddings = self.adapter_mlp(condition_embeddings) | |
self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids) | |
token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1) | |
h = self.tok_dropout(token_embeddings) | |
self.freqs_cis = self.freqs_cis.to(h.device) | |
else: | |
if cond_idx is not None: # prefill in inference | |
token_embeddings = self.cls_embedding(cond_idx, train=self.training) | |
token_embeddings = token_embeddings[:,:self.cls_token_num] | |
if condition is not None: | |
condition_embeddings = self.condition_mlp(condition.to(torch.bfloat16),train=self.training) | |
self.condition_token = condition_embeddings | |
else: # decode_n_tokens(kv cache) in inference | |
token_embeddings = self.tok_embeddings(idx) | |
bs = token_embeddings.shape[0] | |
mask = self.causal_mask[:bs, None, input_pos] | |
h = self.tok_dropout(token_embeddings) | |
self.freqs_cis = self.freqs_cis | |
if self.training: | |
freqs_cis = self.freqs_cis[:token_embeddings.shape[1]] | |
else: | |
freqs_cis = self.freqs_cis[input_pos] | |
# transformer blocks | |
for i, layer in enumerate(self.layers): | |
if i%self.layer_internal == 0: | |
if self.training: | |
h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token) | |
else: | |
if len(input_pos)>1: | |
h[:, -1:] = h[:, -1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1]) | |
else: | |
h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos-self.cls_token_num+1]) | |
h = layer(h, freqs_cis, input_pos, mask) | |
# output layers | |
h = self.norm(h) | |
logits = self.output(h).float() | |
if self.training: | |
logits = logits[:, self.cls_token_num - 1:].contiguous() | |
# if we are given some desired targets also calculate the loss | |
loss = None | |
if valid is not None: | |
loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none') | |
valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1) | |
loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1) | |
elif targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
def get_fsdp_wrap_module_list(self) -> List[nn.Module]: | |
return list(self.layers) | |
################################################################################# | |
# Rotary Positional Embedding Functions # | |
################################################################################# | |
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py | |
def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120): | |
freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) | |
t = torch.arange(seq_len, device=freqs.device) | |
freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2) | |
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) | |
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2) | |
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2) | |
return cond_cache | |
def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120): | |
# split the dimension into half, one for x and one for y | |
half_dim = n_elem // 2 | |
freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)) | |
t = torch.arange(grid_size, device=freqs.device) | |
freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2) | |
freqs_grid = torch.concat([ | |
freqs[:, None, :].expand(-1, grid_size, -1), | |
freqs[None, :, :].expand(grid_size, -1, -1), | |
], dim=-1) # (grid_size, grid_size, head_dim // 2) | |
cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2) | |
cache = cache_grid.flatten(0, 1) | |
cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2) | |
return cond_cache | |
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): | |
# x: (bs, seq_len, n_head, head_dim) | |
# freqs_cis (seq_len, head_dim // 2, 2) | |
xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) | |
freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2) | |
x_out2 = torch.stack([ | |
xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], | |
xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], | |
], dim=-1) | |
x_out2 = x_out2.flatten(3) | |
return x_out2.type_as(x) | |
################################################################################# | |
# GPT Configs # | |
################################################################################# | |
### text-conditional | |
def GPT_7B(**kwargs): | |
return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B | |
def GPT_3B(**kwargs): | |
return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B | |
def GPT_1B(**kwargs): | |
return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B | |
### class-conditional | |
def GPT_XXXL(**kwargs): | |
return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B | |
def GPT_XXL(**kwargs): | |
return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B | |
def GPT_XL(**kwargs): | |
return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M | |
def GPT_L(**kwargs): | |
return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M | |
def GPT_B(**kwargs): | |
return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M | |
GPT_models = { | |
'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL, | |
'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, | |
} |