Spaces:
Running
on
Zero
Running
on
Zero
# Modified from: | |
# DiT: https://github.com/facebookresearch/DiT/blob/main/sample_ddp.py | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
import torch.nn.functional as F | |
import torch.distributed as dist | |
from tqdm import tqdm | |
import os | |
from PIL import Image | |
import numpy as np | |
import math | |
import argparse | |
from tokenizer.tokenizer_image.vq_model import VQ_models | |
from autoregressive.models.gpt import GPT_models | |
from autoregressive.models.generate import generate | |
def create_npz_from_sample_folder(sample_dir, num=50_000): | |
""" | |
Builds a single .npz file from a folder of .png samples. | |
""" | |
samples = [] | |
for i in tqdm(range(num), desc="Building .npz file from samples"): | |
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png") | |
sample_np = np.asarray(sample_pil).astype(np.uint8) | |
samples.append(sample_np) | |
samples = np.stack(samples) | |
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3) | |
npz_path = f"{sample_dir}.npz" | |
np.savez(npz_path, arr_0=samples) | |
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].") | |
return npz_path | |
def main(args): | |
# Setup PyTorch: | |
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage" | |
torch.set_grad_enabled(False) | |
# Setup DDP: | |
dist.init_process_group("nccl") | |
rank = dist.get_rank() | |
device = rank % torch.cuda.device_count() | |
seed = args.global_seed * dist.get_world_size() + rank | |
torch.manual_seed(seed) | |
torch.cuda.set_device(device) | |
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.") | |
# create and load model | |
vq_model = VQ_models[args.vq_model]( | |
codebook_size=args.codebook_size, | |
codebook_embed_dim=args.codebook_embed_dim) | |
vq_model.to(device) | |
vq_model.eval() | |
checkpoint = torch.load(args.vq_ckpt, map_location="cpu") | |
vq_model.load_state_dict(checkpoint["model"]) | |
del checkpoint | |
# create and load gpt model | |
precision = {'none': torch.float32, 'bf16': torch.bfloat16, 'fp16': torch.float16}[args.precision] | |
latent_size = args.image_size // args.downsample_size | |
gpt_model = GPT_models[args.gpt_model]( | |
vocab_size=args.codebook_size, | |
block_size=latent_size ** 2, | |
num_classes=args.num_classes, | |
cls_token_num=args.cls_token_num, | |
model_type=args.gpt_type, | |
).to(device=device, dtype=precision) | |
checkpoint = torch.load(args.gpt_ckpt, map_location="cpu") | |
if args.from_fsdp: # fsdp | |
model_weight = checkpoint | |
elif "model" in checkpoint: # ddp | |
model_weight = checkpoint["model"] | |
elif "module" in checkpoint: # deepspeed | |
model_weight = checkpoint["module"] | |
elif "state_dict" in checkpoint: | |
model_weight = checkpoint["state_dict"] | |
else: | |
raise Exception("please check model weight, maybe add --from-fsdp to run command") | |
# if 'freqs_cis' in model_weight: | |
# model_weight.pop('freqs_cis') | |
gpt_model.load_state_dict(model_weight, strict=False) | |
gpt_model.eval() | |
del checkpoint | |
if args.compile: | |
print(f"compiling the model...") | |
gpt_model = torch.compile( | |
gpt_model, | |
mode="reduce-overhead", | |
fullgraph=True | |
) # requires PyTorch 2.0 (optional) | |
else: | |
print(f"no model compile") | |
# Create folder to save samples: | |
model_string_name = args.gpt_model.replace("/", "-") | |
if args.from_fsdp: | |
ckpt_string_name = args.gpt_ckpt.split('/')[-2] | |
else: | |
ckpt_string_name = os.path.basename(args.gpt_ckpt).replace(".pth", "").replace(".pt", "") | |
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-size-{args.image_size_eval}-{args.vq_model}-" \ | |
f"topk-{args.top_k}-topp-{args.top_p}-temperature-{args.temperature}-" \ | |
f"cfg-{args.cfg_scale}-seed-{args.global_seed}" | |
sample_folder_dir = f"{args.sample_dir}/{folder_name}" | |
if rank == 0: | |
os.makedirs(sample_folder_dir, exist_ok=True) | |
print(f"Saving .png samples at {sample_folder_dir}") | |
dist.barrier() | |
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run: | |
n = args.per_proc_batch_size | |
global_batch_size = n * dist.get_world_size() | |
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples: | |
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size) | |
if rank == 0: | |
print(f"Total number of images that will be sampled: {total_samples}") | |
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size" | |
samples_needed_this_gpu = int(total_samples // dist.get_world_size()) | |
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size" | |
iterations = int(samples_needed_this_gpu // n) | |
pbar = range(iterations) | |
pbar = tqdm(pbar) if rank == 0 else pbar | |
total = 0 | |
for _ in pbar: | |
# Sample inputs: | |
c_indices = torch.randint(0, args.num_classes, (n,), device=device) | |
qzshape = [len(c_indices), args.codebook_embed_dim, latent_size, latent_size] | |
index_sample = generate( | |
gpt_model, c_indices, latent_size ** 2, | |
cfg_scale=args.cfg_scale, cfg_interval=args.cfg_interval, | |
temperature=args.temperature, top_k=args.top_k, | |
top_p=args.top_p, sample_logits=True, | |
) | |
samples = vq_model.decode_code(index_sample, qzshape) # output value is between [-1, 1] | |
if args.image_size_eval != args.image_size: | |
samples = F.interpolate(samples, size=(args.image_size_eval, args.image_size_eval), mode='bicubic') | |
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy() | |
# Save samples to disk as individual .png files | |
for i, sample in enumerate(samples): | |
index = i * dist.get_world_size() + rank + total | |
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png") | |
total += global_batch_size | |
# Make sure all processes have finished saving their samples before attempting to convert to .npz | |
dist.barrier() | |
if rank == 0: | |
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples) | |
print("Done.") | |
dist.barrier() | |
dist.destroy_process_group() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--gpt-model", type=str, choices=list(GPT_models.keys()), default="GPT-B") | |
parser.add_argument("--gpt-ckpt", type=str, default=None) | |
parser.add_argument("--gpt-type", type=str, choices=['c2i', 't2i'], default="c2i", help="class-conditional or text-conditional") | |
parser.add_argument("--from-fsdp", action='store_true') | |
parser.add_argument("--cls-token-num", type=int, default=1, help="max token number of condition input") | |
parser.add_argument("--precision", type=str, default='bf16', choices=["none", "fp16", "bf16"]) | |
parser.add_argument("--compile", action='store_true', default=True) | |
parser.add_argument("--vq-model", type=str, choices=list(VQ_models.keys()), default="VQ-16") | |
parser.add_argument("--vq-ckpt", type=str, default=None, help="ckpt path for vq model") | |
parser.add_argument("--codebook-size", type=int, default=16384, help="codebook size for vector quantization") | |
parser.add_argument("--codebook-embed-dim", type=int, default=8, help="codebook dimension for vector quantization") | |
parser.add_argument("--image-size", type=int, choices=[256, 384, 512], default=384) | |
parser.add_argument("--image-size-eval", type=int, choices=[256, 384, 512], default=256) | |
parser.add_argument("--downsample-size", type=int, choices=[8, 16], default=16) | |
parser.add_argument("--num-classes", type=int, default=1000) | |
parser.add_argument("--cfg-scale", type=float, default=1.5) | |
parser.add_argument("--cfg-interval", type=float, default=-1) | |
parser.add_argument("--sample-dir", type=str, default="samples") | |
parser.add_argument("--per-proc-batch-size", type=int, default=32) | |
parser.add_argument("--num-fid-samples", type=int, default=5000) | |
parser.add_argument("--global-seed", type=int, default=0) | |
parser.add_argument("--top-k", type=int, default=0,help="top-k value to sample with") | |
parser.add_argument("--temperature", type=float, default=1.0, help="temperature value to sample with") | |
parser.add_argument("--top-p", type=float, default=1.0, help="top-p value to sample with") | |
args = parser.parse_args() | |
main(args) |