Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from model import Model | |
from app_edge import create_demo as create_demo_edge | |
from app_depth import create_demo as create_demo_depth | |
import os | |
import torch | |
import subprocess | |
# def install_requirements(): | |
# try: | |
# # subprocess.run(['pip', 'install', 'torch==2.1.2+cu118', '--extra-index-url', 'https://download.pytorch.org/whl/cu118'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
# subprocess.run(['pip', 'show', 'torch'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
# # result = subprocess.run(['pip', 'install', '-r', 'requirements.txt'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
# print("安装成功!") | |
# # print("输出:", result.stdout.decode('utf-8')) | |
# except subprocess.CalledProcessError as e: | |
# print("安装失败!") | |
# print("错误:", e.stderr.decode('utf-8')) | |
# install_requirements() | |
print("Torch version:", torch.__version__) | |
# hf_hub_download(repo_id='wondervictor/ControlAR', | |
# filename='canny_MR.safetensors', | |
# local_dir='./checkpoints/') | |
# hf_hub_download(repo_id='wondervictor/ControlAR', | |
# filename='depth_MR.safetensors', | |
# local_dir='./checkpoints/') | |
# # hf_hub_download('google/flan-t5-xl', cache_dir='./checkpoints/') | |
ckpt_folder = './checkpoints' | |
t5_folder = os.path.join(ckpt_folder, "flan-t5-xl/flan-t5-xl") | |
dinov2_folder = os.path.join(ckpt_folder, "dinov2-small") | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="config.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00001-of-00002.bin", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model-00002-of-00002.bin", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="pytorch_model.bin.index.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="special_tokens_map.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="spiece.model", local_dir=t5_folder) | |
hf_hub_download(repo_id="google/flan-t5-xl", filename="tokenizer_config.json", local_dir=t5_folder) | |
hf_hub_download(repo_id="lllyasviel/Annotators", filename="dpt_hybrid-midas-501f0c75.pt", local_dir=ckpt_folder) | |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="canny_MR.safetensors", local_dir=ckpt_folder) | |
hf_hub_download(repo_id="wondervictor/ControlAR", filename="depth_MR.safetensors", local_dir=ckpt_folder) | |
hf_hub_download(repo_id="facebook/dinov2-small", filename="config.json", local_dir=dinov2_folder) | |
hf_hub_download(repo_id="facebook/dinov2-small", filename="preprocessor_config.json", local_dir=dinov2_folder) | |
hf_hub_download(repo_id="facebook/dinov2-small", filename="pytorch_model.bin", local_dir=dinov2_folder) | |
DESCRIPTION = "# [ControlAR: Controllable Image Generation with Autoregressive Models](https://arxiv.org/abs/2410.02705) \n ### The first row in outputs is the input image and condition. The second row is the images generated by ControlAR. \n ### You can run locally by following the instruction on our [Github Repo](https://github.com/hustvl/ControlAR)." | |
SHOW_DUPLICATE_BUTTON = os.getenv("SHOW_DUPLICATE_BUTTON") == "1" | |
model = Model() | |
# device = "cuda" | |
# model.to(device) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=SHOW_DUPLICATE_BUTTON, | |
) | |
with gr.Tabs(): | |
# with gr.TabItem("Depth"): | |
# create_demo_depth(model.process_depth) | |
with gr.TabItem("edge"): | |
create_demo_edge(model.process_edge) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |