Spaces:
Running
on
Zero
Running
on
Zero
import gc | |
import cv2 | |
import numpy as np | |
import PIL.Image | |
import torch | |
from controlnet_aux import ( | |
CannyDetector, | |
# ContentShuffleDetector, | |
HEDdetector, | |
# LineartAnimeDetector, | |
LineartDetector, | |
MidasDetector, | |
# MLSDdetector, | |
# NormalBaeDetector, | |
# OpenposeDetector, | |
# PidiNetDetector, | |
) | |
from controlnet_aux.util import HWC3 | |
from transformers import pipeline | |
# from cv_utils import resize_image | |
# from depth_estimator import DepthEstimator | |
class DepthEstimator: | |
def __init__(self): | |
self.model = pipeline("depth-estimation") | |
def __call__(self, image: np.ndarray, **kwargs) -> PIL.Image.Image: | |
detect_resolution = kwargs.pop("detect_resolution", 512) | |
image_resolution = kwargs.pop("image_resolution", 512) | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = PIL.Image.fromarray(image) | |
image = self.model(image) | |
image = image["depth"] | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
return PIL.Image.fromarray(image) | |
def resize_image(input_image, resolution, interpolation=None): | |
H, W, C = input_image.shape | |
H = float(H) | |
W = float(W) | |
k = float(resolution) / max(H, W) | |
H *= k | |
W *= k | |
H = int(np.round(H / 64.0)) * 64 | |
W = int(np.round(W / 64.0)) * 64 | |
if interpolation is None: | |
interpolation = cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA | |
img = cv2.resize(input_image, (W, H), interpolation=interpolation) | |
return img | |
class Preprocessor: | |
# MODEL_ID = "condition/ckpts" | |
MODEL_ID = "lllyasviel/Annotators" | |
def __init__(self): | |
self.model = None | |
self.name = "" | |
def load(self, name: str) -> None: | |
if name == self.name: | |
return | |
if name == "HED": | |
self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
# elif name == "Midas": | |
# self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Lineart": | |
self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
elif name == "Canny": | |
self.model = CannyDetector() | |
elif name == "Depth": | |
# self.model = DepthEstimator() | |
self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
else: | |
raise ValueError | |
torch.cuda.empty_cache() | |
gc.collect() | |
self.name = name | |
def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
if self.name == "Canny": | |
if "detect_resolution" in kwargs: | |
detect_resolution = kwargs.pop("detect_resolution") | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
return PIL.Image.fromarray(image) | |
elif self.name == "Midas": | |
detect_resolution = kwargs.pop("detect_resolution", 512) | |
image_resolution = kwargs.pop("image_resolution", 512) | |
image = np.array(image) | |
image = HWC3(image) | |
image = resize_image(image, resolution=detect_resolution) | |
image = self.model(image, **kwargs) | |
image = HWC3(image) | |
image = resize_image(image, resolution=image_resolution) | |
return PIL.Image.fromarray(image) | |
else: | |
return self.model(image, **kwargs) |