wondervictor commited on
Commit
752a92c
·
1 Parent(s): bb31867
Files changed (2) hide show
  1. autoregressive/models/generate.py +2 -2
  2. model.py +5 -3
autoregressive/models/generate.py CHANGED
@@ -138,7 +138,7 @@ def decode_n_tokens(
138
 
139
  @torch.no_grad()
140
  def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
141
- print("cond", torch.any(torch.isnan(cond)))
142
  if condition is not None:
143
  with torch.no_grad():
144
  # print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
@@ -147,7 +147,7 @@ def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_int
147
  # print("before condition", condition)
148
  # condition = torch.ones_like(condition)
149
  condition = model.adapter_mlp(condition)
150
- print("condition", torch.any(torch.isnan(condition)))
151
  if model.model_type == 'c2i':
152
  if cfg_scale > 1.0:
153
  cond_null = torch.ones_like(cond) * model.num_classes
 
138
 
139
  @torch.no_grad()
140
  def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
141
+ # print("cond", torch.any(torch.isnan(cond)))
142
  if condition is not None:
143
  with torch.no_grad():
144
  # print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
 
147
  # print("before condition", condition)
148
  # condition = torch.ones_like(condition)
149
  condition = model.adapter_mlp(condition)
150
+ # print("condition", torch.any(torch.isnan(condition)))
151
  if model.model_type == 'c2i':
152
  if cfg_scale > 1.0:
153
  cond_null = torch.ones_like(cond) * model.num_classes
model.py CHANGED
@@ -57,7 +57,7 @@ class Model:
57
 
58
  def to(self, device):
59
  self.gpt_model_canny.to('cuda')
60
- print(next(self.gpt_model_canny.adapter.parameters()).device)
61
  # print(self.gpt_model_canny.device)
62
 
63
  def load_vq(self):
@@ -88,7 +88,7 @@ class Model:
88
  # print("prev:", model_weight['adapter.model.embeddings.patch_embeddings.projection.weight'])
89
  gpt_model.load_state_dict(model_weight, strict=True)
90
  gpt_model.eval()
91
- print("loaded:", gpt_model.adapter.model.embeddings.patch_embeddings.projection.weight)
92
  print("gpt model is loaded")
93
  return gpt_model
94
 
@@ -123,10 +123,11 @@ class Model:
123
  image = resize_image_to_16_multiple(image, 'canny')
124
  W, H = image.size
125
  print(W, H)
 
126
  self.t5_model.model.to('cuda')
127
  self.gpt_model_canny.to('cuda')
128
  self.vq_model.to('cuda')
129
- print("after cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
130
 
131
  condition_img = self.get_control_canny(np.array(image), low_threshold,
132
  high_threshold)
@@ -202,6 +203,7 @@ class Model:
202
  image = resize_image_to_16_multiple(image, 'depth')
203
  W, H = image.size
204
  print(W, H)
 
205
  self.t5_model.model.to(self.device)
206
  self.gpt_model_depth.to(self.device)
207
  self.get_control_depth.model.to(self.device)
 
57
 
58
  def to(self, device):
59
  self.gpt_model_canny.to('cuda')
60
+ # print(next(self.gpt_model_canny.adapter.parameters()).device)
61
  # print(self.gpt_model_canny.device)
62
 
63
  def load_vq(self):
 
88
  # print("prev:", model_weight['adapter.model.embeddings.patch_embeddings.projection.weight'])
89
  gpt_model.load_state_dict(model_weight, strict=True)
90
  gpt_model.eval()
91
+ # print("loaded:", gpt_model.adapter.model.embeddings.patch_embeddings.projection.weight)
92
  print("gpt model is loaded")
93
  return gpt_model
94
 
 
123
  image = resize_image_to_16_multiple(image, 'canny')
124
  W, H = image.size
125
  print(W, H)
126
+ self.gpt_model_depth.to('cpu')
127
  self.t5_model.model.to('cuda')
128
  self.gpt_model_canny.to('cuda')
129
  self.vq_model.to('cuda')
130
+ # print("after cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
131
 
132
  condition_img = self.get_control_canny(np.array(image), low_threshold,
133
  high_threshold)
 
203
  image = resize_image_to_16_multiple(image, 'depth')
204
  W, H = image.size
205
  print(W, H)
206
+ self.gpt_model_canny.to('cpu')
207
  self.t5_model.model.to(self.device)
208
  self.gpt_model_depth.to(self.device)
209
  self.get_control_depth.model.to(self.device)