Spaces:
Running
on
Zero
Running
on
Zero
wondervictor
commited on
Commit
·
752a92c
1
Parent(s):
bb31867
update
Browse files- autoregressive/models/generate.py +2 -2
- model.py +5 -3
autoregressive/models/generate.py
CHANGED
@@ -138,7 +138,7 @@ def decode_n_tokens(
|
|
138 |
|
139 |
@torch.no_grad()
|
140 |
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
|
141 |
-
print("cond", torch.any(torch.isnan(cond)))
|
142 |
if condition is not None:
|
143 |
with torch.no_grad():
|
144 |
# print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
|
@@ -147,7 +147,7 @@ def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_int
|
|
147 |
# print("before condition", condition)
|
148 |
# condition = torch.ones_like(condition)
|
149 |
condition = model.adapter_mlp(condition)
|
150 |
-
print("condition", torch.any(torch.isnan(condition)))
|
151 |
if model.model_type == 'c2i':
|
152 |
if cfg_scale > 1.0:
|
153 |
cond_null = torch.ones_like(cond) * model.num_classes
|
|
|
138 |
|
139 |
@torch.no_grad()
|
140 |
def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs):
|
141 |
+
# print("cond", torch.any(torch.isnan(cond)))
|
142 |
if condition is not None:
|
143 |
with torch.no_grad():
|
144 |
# print(f'nan: {torch.any(torch.isnan(model.adapter.model.embeddings.patch_embeddings.projection.weight))}')
|
|
|
147 |
# print("before condition", condition)
|
148 |
# condition = torch.ones_like(condition)
|
149 |
condition = model.adapter_mlp(condition)
|
150 |
+
# print("condition", torch.any(torch.isnan(condition)))
|
151 |
if model.model_type == 'c2i':
|
152 |
if cfg_scale > 1.0:
|
153 |
cond_null = torch.ones_like(cond) * model.num_classes
|
model.py
CHANGED
@@ -57,7 +57,7 @@ class Model:
|
|
57 |
|
58 |
def to(self, device):
|
59 |
self.gpt_model_canny.to('cuda')
|
60 |
-
print(next(self.gpt_model_canny.adapter.parameters()).device)
|
61 |
# print(self.gpt_model_canny.device)
|
62 |
|
63 |
def load_vq(self):
|
@@ -88,7 +88,7 @@ class Model:
|
|
88 |
# print("prev:", model_weight['adapter.model.embeddings.patch_embeddings.projection.weight'])
|
89 |
gpt_model.load_state_dict(model_weight, strict=True)
|
90 |
gpt_model.eval()
|
91 |
-
print("loaded:", gpt_model.adapter.model.embeddings.patch_embeddings.projection.weight)
|
92 |
print("gpt model is loaded")
|
93 |
return gpt_model
|
94 |
|
@@ -123,10 +123,11 @@ class Model:
|
|
123 |
image = resize_image_to_16_multiple(image, 'canny')
|
124 |
W, H = image.size
|
125 |
print(W, H)
|
|
|
126 |
self.t5_model.model.to('cuda')
|
127 |
self.gpt_model_canny.to('cuda')
|
128 |
self.vq_model.to('cuda')
|
129 |
-
print("after cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
|
130 |
|
131 |
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
132 |
high_threshold)
|
@@ -202,6 +203,7 @@ class Model:
|
|
202 |
image = resize_image_to_16_multiple(image, 'depth')
|
203 |
W, H = image.size
|
204 |
print(W, H)
|
|
|
205 |
self.t5_model.model.to(self.device)
|
206 |
self.gpt_model_depth.to(self.device)
|
207 |
self.get_control_depth.model.to(self.device)
|
|
|
57 |
|
58 |
def to(self, device):
|
59 |
self.gpt_model_canny.to('cuda')
|
60 |
+
# print(next(self.gpt_model_canny.adapter.parameters()).device)
|
61 |
# print(self.gpt_model_canny.device)
|
62 |
|
63 |
def load_vq(self):
|
|
|
88 |
# print("prev:", model_weight['adapter.model.embeddings.patch_embeddings.projection.weight'])
|
89 |
gpt_model.load_state_dict(model_weight, strict=True)
|
90 |
gpt_model.eval()
|
91 |
+
# print("loaded:", gpt_model.adapter.model.embeddings.patch_embeddings.projection.weight)
|
92 |
print("gpt model is loaded")
|
93 |
return gpt_model
|
94 |
|
|
|
123 |
image = resize_image_to_16_multiple(image, 'canny')
|
124 |
W, H = image.size
|
125 |
print(W, H)
|
126 |
+
self.gpt_model_depth.to('cpu')
|
127 |
self.t5_model.model.to('cuda')
|
128 |
self.gpt_model_canny.to('cuda')
|
129 |
self.vq_model.to('cuda')
|
130 |
+
# print("after cuda", self.gpt_model_canny.adapter.model.embeddings.patch_embeddings.projection.weight)
|
131 |
|
132 |
condition_img = self.get_control_canny(np.array(image), low_threshold,
|
133 |
high_threshold)
|
|
|
203 |
image = resize_image_to_16_multiple(image, 'depth')
|
204 |
W, H = image.size
|
205 |
print(W, H)
|
206 |
+
self.gpt_model_canny.to('cpu')
|
207 |
self.t5_model.model.to(self.device)
|
208 |
self.gpt_model_depth.to(self.device)
|
209 |
self.get_control_depth.model.to(self.device)
|