# This is an improved version and model of HED edge detection with Apache License, Version 2.0. # Please use this implementation in your products # This implementation may produce slightly different results from Saining Xie's official implementations, # but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations. # Different from official models and other implementations, this is an RGB-input model (rather than BGR) # and in this way it works better for gradio's RGB protocol import os import cv2 import torch import numpy as np from torch.nn.parallel import DataParallel from einops import rearrange from condition.utils import annotator_ckpts_path import torch.nn.functional as F class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 class HEDdetector(torch.nn.Module): def __init__(self): super().__init__() remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth" modelpath = os.path.join(annotator_ckpts_path, "ControlNetHED.pth") if not os.path.exists(modelpath): from basicsr.utils.download_util import load_file_from_url load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path) self.netNetwork = ControlNetHED_Apache2().float()#.to(self.device).eval() self.netNetwork.load_state_dict(torch.load(modelpath)) def __call__(self, input_image): """ input: tensor (B,C,H,W) output: tensor (B,H,W) """ B, C, H, W = input_image.shape image_hed = input_image edges = self.netNetwork(image_hed) edges = [F.interpolate(e, size=(H, W), mode='bilinear', align_corners=False).squeeze(1) for e in edges] edges = torch.stack(edges, dim=1) edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1))) edge = (edge * 255.0).clamp(0, 255) return edge def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z if __name__ == '__main__': import matplotlib.pyplot as plt from tqdm import tqdm import torch.nn.functional as F device = torch.device('cuda') apply_hed = HEDdetector().to(device).eval() img = cv2.imread('condition/dragon_1024_512.jpg') H,W = img.shape[:2] resize_img = cv2.resize(img,(512,1024)) detected_map = apply_hed(torch.from_numpy(img).permute(2,0,1).unsqueeze(0).cuda()) resize_detected_map = apply_hed(torch.from_numpy(resize_img).permute(2,0,1).unsqueeze(0).cuda()) cv2.imwrite('condition/example_hed_resize.jpg', resize_detected_map[0].cpu().detach().numpy()) resize_detected_map = F.interpolate(resize_detected_map.unsqueeze(0).to(torch.float32), size=(H,W), mode='bilinear', align_corners=False, antialias=True) print(abs(detected_map - resize_detected_map).sum()) print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) cv2.imwrite('condition/example_hed.jpg', detected_map[0].cpu().detach().numpy()) cv2.imwrite('condition/example_hed_resized.jpg', resize_detected_map[0,0].cpu().detach().numpy())