import gc import spaces from safetensors.torch import load_file from autoregressive.models.gpt_t2i import GPT_models from tokenizer.tokenizer_image.vq_model import VQ_models from language.t5 import T5Embedder import torch import numpy as np import PIL from PIL import Image from condition.canny import CannyDetector import time from autoregressive.models.generate import generate from condition.midas.depth import MidasDetector # from controlnet_aux import ( # MidasDetector, # ) models = { "canny": "checkpoints/canny_MR.safetensors", "depth": "checkpoints/depth_MR.safetensors", } def resize_image_to_16_multiple(image, condition_type='canny'): if isinstance(image, np.ndarray): image = Image.fromarray(image) # image = Image.open(image_path) width, height = image.size if condition_type == 'depth': # The depth model requires a side length that is a multiple of 32 new_width = (width + 31) // 32 * 32 new_height = (height + 31) // 32 * 32 else: new_width = (width + 15) // 16 * 16 new_height = (height + 15) // 16 * 16 resized_image = image.resize((new_width, new_height)) return resized_image class Model: def __init__(self): self.device = torch.device( "cuda:0") self.base_model_id = "" self.task_name = "" self.vq_model = self.load_vq() self.t5_model = self.load_t5() self.gpt_model_canny = self.load_gpt(condition_type='canny') self.gpt_model_depth = self.load_gpt(condition_type='depth') self.get_control_canny = CannyDetector() self.get_control_depth = MidasDetector('cuda') # self.get_control_depth = MidasDetector.from_pretrained("lllyasviel/Annotators") def to(self, device): self.gpt_model_canny.to('cuda') print(next(self.gpt_model_canny.adapter.parameters()).device) # print(self.gpt_model_canny.device) def load_vq(self): vq_model = VQ_models["VQ-16"](codebook_size=16384, codebook_embed_dim=8) vq_model.to('cuda') vq_model.eval() checkpoint = torch.load(f"checkpoints/vq_ds16_t2i.pt", map_location="cpu") vq_model.load_state_dict(checkpoint["model"]) del checkpoint print("image tokenizer is loaded") return vq_model def load_gpt(self, condition_type='canny'): gpt_ckpt = models[condition_type] # precision = torch.bfloat16 precision = torch.float32 latent_size = 768 // 16 gpt_model = GPT_models["GPT-XL"]( block_size=latent_size**2, cls_token_num=120, model_type='t2i', condition_type=condition_type, ).to(device='cuda', dtype=precision) model_weight = load_file(gpt_ckpt) # gpt_model.load_state_dict(model_weight, strict=True) gpt_model.eval() print("gpt model is loaded") return gpt_model def load_t5(self): # precision = torch.bfloat16 precision = torch.float32 t5_model = T5Embedder( device=self.device, local_cache=True, cache_dir='checkpoints/flan-t5-xl', dir_or_name='flan-t5-xl', torch_dtype=precision, model_max_length=120, ) return t5_model @torch.no_grad() @spaces.GPU(enable_queue=True) def process_canny( self, image: np.ndarray, prompt: str, cfg_scale: float, temperature: float, top_k: int, top_p: int, seed: int, low_threshold: int, high_threshold: int, ) -> list[PIL.Image.Image]: image = resize_image_to_16_multiple(image, 'canny') W, H = image.size print(W, H) self.t5_model.model.to(self.device) self.gpt_model_canny.to(self.device) condition_img = self.get_control_canny(np.array(image), low_threshold, high_threshold) condition_img = torch.from_numpy(condition_img[None, None, ...]).repeat( 2, 3, 1, 1) condition_img = condition_img.to(self.device) condition_img = 2 * (condition_img / 255 - 0.5) prompts = [prompt] * 2 caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts) print(f"processing left-padding...") new_emb_masks = torch.flip(emb_masks, dims=[-1]) new_caption_embs = [] for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): valid_num = int(emb_mask.sum().item()) print(f' prompt {idx} token len: {valid_num}') new_caption_emb = torch.cat( [caption_emb[valid_num:], caption_emb[:valid_num]]) new_caption_embs.append(new_caption_emb) new_caption_embs = torch.stack(new_caption_embs) c_indices = new_caption_embs * new_emb_masks[:, :, None] c_emb_masks = new_emb_masks qzshape = [len(c_indices), 8, H // 16, W // 16] t1 = time.time() print(caption_embs.device) index_sample = generate( self.gpt_model_canny, c_indices, (H // 16) * (W // 16), c_emb_masks, condition=condition_img, cfg_scale=cfg_scale, temperature=temperature, top_k=top_k, top_p=top_p, sample_logits=True, ) sampling_time = time.time() - t1 print(f"Full sampling takes about {sampling_time:.2f} seconds.") t2 = time.time() print(index_sample.shape) samples = self.vq_model.decode_code( index_sample, qzshape) # output value is between [-1, 1] decoder_time = time.time() - t2 print(f"decoder takes about {decoder_time:.2f} seconds.") samples = torch.cat((condition_img[0:1], samples), dim=0) samples = 255 * (samples * 0.5 + 0.5) samples = [image] + [ Image.fromarray( sample.permute(1, 2, 0).cpu().detach().numpy().clip( 0, 255).astype(np.uint8)) for sample in samples ] del condition_img torch.cuda.empty_cache() return samples @torch.no_grad() @spaces.GPU(enable_queue=True) def process_depth( self, image: np.ndarray, prompt: str, cfg_scale: float, temperature: float, top_k: int, top_p: int, seed: int, ) -> list[PIL.Image.Image]: image = resize_image_to_16_multiple(image, 'depth') W, H = image.size print(W, H) self.t5_model.model.to(self.device) self.gpt_model_depth.to(self.device) self.get_control_depth.model.to(self.device) self.vq_model.to(self.device) image_tensor = torch.from_numpy(np.array(image)).to(self.device) # condition_img = torch.from_numpy( # self.get_control_depth(image_tensor)).unsqueeze(0) # condition_img = condition_img.unsqueeze(0).repeat(2, 3, 1, 1) # condition_img = condition_img.to(self.device) # condition_img = 2 * (condition_img / 255 - 0.5) condition_img = 2 * (image_tensor / 255 - 0.5) print(condition_img.shape) condition_img = condition_img.permute(2,0,1).unsqueeze(0).repeat(2, 1, 1, 1) # control_image = self.get_control_depth( # image=image, # image_resolution=512, # detect_resolution=512, # ) prompts = [prompt] * 2 caption_embs, emb_masks = self.t5_model.get_text_embeddings(prompts) print(f"processing left-padding...") new_emb_masks = torch.flip(emb_masks, dims=[-1]) new_caption_embs = [] for idx, (caption_emb, emb_mask) in enumerate(zip(caption_embs, emb_masks)): valid_num = int(emb_mask.sum().item()) print(f' prompt {idx} token len: {valid_num}') new_caption_emb = torch.cat( [caption_emb[valid_num:], caption_emb[:valid_num]]) new_caption_embs.append(new_caption_emb) new_caption_embs = torch.stack(new_caption_embs) c_indices = new_caption_embs * new_emb_masks[:, :, None] c_emb_masks = new_emb_masks qzshape = [len(c_indices), 8, H // 16, W // 16] t1 = time.time() index_sample = generate( self.gpt_model_depth, c_indices, (H // 16) * (W // 16), c_emb_masks, condition=condition_img, cfg_scale=cfg_scale, temperature=temperature, top_k=top_k, top_p=top_p, sample_logits=True, ) sampling_time = time.time() - t1 print(f"Full sampling takes about {sampling_time:.2f} seconds.") t2 = time.time() print(index_sample.shape) samples = self.vq_model.decode_code(index_sample, qzshape) decoder_time = time.time() - t2 print(f"decoder takes about {decoder_time:.2f} seconds.") condition_img = condition_img.cpu() samples = samples.cpu() samples = torch.cat((condition_img[0:1], samples), dim=0) samples = 255 * (samples * 0.5 + 0.5) samples = [image] + [ Image.fromarray( sample.permute(1, 2, 0).numpy().clip(0, 255).astype(np.uint8)) for sample in samples ] del image_tensor del condition_img torch.cuda.empty_cache() return samples