from transformers import AutoImageProcessor, AutoModel, AutoConfig from PIL import Image import requests import torch import torch.nn as nn class Dinov2_Adapter(nn.Module): def __init__(self, input_dim=1, output_dim=768, attention=False, pool=False, nheads=8, dropout=0.1, adapter_size='small', condition_type='canny'): super(Dinov2_Adapter, self).__init__() print(f"Choose adapter size: {adapter_size}") print(f"condition type: {condition_type}") self.model = AutoModel.from_pretrained(f'checkpoints/dinov2-{adapter_size}') # config = AutoConfig.from_pretrained(f'facebook/dinov2-{adapter_size}') # self.model = AutoModel.from_config(config) self.condition_type = condition_type def to_patch14(self, input): H, W = input.shape[2:] new_H = (H // 16) * 14 new_W = (W // 16) * 14 if self.condition_type in ['canny', 'seg']: output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='nearest')#, align_corners=True) canny, seg else: output = torch.nn.functional.interpolate(input, size=(new_H, new_W), mode='bicubic', align_corners=True) # depth, lineart, hed return output def forward(self, x): x = self.to_patch14(x) x = self.model(x) return x.last_hidden_state[:, 1:] if __name__ == '__main__': model = Dinov2_Adapter().cuda() inputs = torch.randn(4,3,512,512).cuda() outputs = model(inputs) print(outputs.shape)