# Modified from: # VQGAN: https://github.com/CompVis/taming-transformers/blob/master/taming/modules/transformer/mingpt.py # DiT: https://github.com/facebookresearch/DiT/blob/main/models.py # nanoGPT: https://github.com/karpathy/nanoGPT/blob/master/model.py # llama: https://github.com/facebookresearch/llama/blob/main/llama/model.py # gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/model.py # PixArt: https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py from dataclasses import dataclass from typing import Optional, List import torch import torch.nn as nn from torch.nn import functional as F from utils.drop_path import DropPath # from autoregressive.models.vit_adapter import ViT_Adapter from autoregressive.models.dinov2_adapter import Dinov2_Adapter def get_causal_mask(seq_length): mask = torch.triu(torch.ones(seq_length, seq_length), diagonal=1).type(torch.bool) mask = mask.masked_fill(mask, float('-inf')) mask = mask.masked_fill(~mask, float(0.0)) return mask def find_multiple(n: int, k: int): if n % k == 0: return n return n + k - (n % k) @dataclass class ModelArgs: dim: int = 4096 n_layer: int = 32 n_head: int = 32 n_kv_head: Optional[int] = None multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2 ffn_dim_multiplier: Optional[float] = None rope_base: float = 10000 norm_eps: float = 1e-5 initializer_range: float = 0.02 token_dropout_p: float = 0.1 attn_dropout_p: float = 0.0 resid_dropout_p: float = 0.1 ffn_dropout_p: float = 0.1 drop_path_rate: float = 0.0 num_classes: int = 1000 caption_dim: int = 2048 class_dropout_prob: float = 0.1 model_type: str = 'c2i' vocab_size: int = 16384 cls_token_num: int = 1 block_size: int = 256 max_batch_size: int = 32 max_seq_len: int = 2048 adapter_size: str = 'small' condition_type: str = 'canny' ################################################################################# # Embedding Layers for Class Labels # ################################################################################# class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels, drop_ids def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels,drop_ids = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels).unsqueeze(1) if (train and use_dropout) or (force_drop_ids is not None): return embeddings,drop_ids else: return embeddings class ConditionEmbedder(nn.Module): """ Embeds Condition into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120, vocab_size=16384): super().__init__() self.cap_proj = MLP(in_features=hidden_size, hidden_features=hidden_size, out_features=hidden_size) self.register_buffer("uncond_embedding", torch.zeros(token_num, hidden_size) / hidden_size ** 0.5) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None, drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: if drop_ids is None: drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None], self.uncond_embedding[:caption.shape[1]], caption) return caption def forward(self, caption, train, force_drop_ids=None, drop_ids=None): use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption = self.token_drop(caption, force_drop_ids, drop_ids) embeddings = self.cap_proj(caption) return embeddings ################################################################################# # Embedding Layers for Text Feature # ################################################################################# class CaptionEmbedder(nn.Module): """ Embeds text caption into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, in_channels, hidden_size, uncond_prob, token_num=120): super().__init__() self.cap_proj = MLP(in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size) self.register_buffer("uncond_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) self.uncond_prob = uncond_prob def token_drop(self, caption, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(caption.shape[0], device=caption.device) < self.uncond_prob else: drop_ids = force_drop_ids == 1 caption = torch.where(drop_ids[:, None, None], self.uncond_embedding, caption) return caption, drop_ids def forward(self, caption, train, force_drop_ids=None): use_dropout = self.uncond_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): caption, drop_ids = self.token_drop(caption, force_drop_ids) embeddings = self.cap_proj(caption) if (train and use_dropout) or (force_drop_ids is not None): return embeddings,drop_ids else: return embeddings class MLP(nn.Module): def __init__(self, in_features, hidden_features, out_features): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features, bias=False) self.act = nn.GELU(approximate='tanh') self.fc2 = nn.Linear(hidden_features, out_features, bias=False) nn.init.zeros_(self.fc1.weight) nn.init.zeros_(self.fc2.weight) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x ################################################################################# # GPT Model # ################################################################################# class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight class FeedForward(nn.Module): def __init__(self, config: ModelArgs): super().__init__() hidden_dim = 4 * config.dim hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if config.ffn_dim_multiplier is not None: hidden_dim = int(config.ffn_dim_multiplier * hidden_dim) hidden_dim = find_multiple(hidden_dim, config.multiple_of) self.w1 = nn.Linear(config.dim, hidden_dim, bias=False) self.w3 = nn.Linear(config.dim, hidden_dim, bias=False) self.w2 = nn.Linear(hidden_dim, config.dim, bias=False) self.ffn_dropout = nn.Dropout(config.ffn_dropout_p) def forward(self, x): return self.ffn_dropout(self.w2(F.silu(self.w1(x)) * self.w3(x))) class KVCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_head, head_dim, dtype): super().__init__() cache_shape = (max_batch_size, n_head, max_seq_length, head_dim) self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out class Attention(nn.Module): def __init__(self, config: ModelArgs): super().__init__() assert config.dim % config.n_head == 0 self.dim = config.dim self.head_dim = config.dim // config.n_head self.n_head = config.n_head self.n_kv_head = config.n_kv_head if config.n_kv_head is not None else config.n_head total_kv_dim = (self.n_head + 2 * self.n_kv_head) * self.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear(config.dim, total_kv_dim, bias=False) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.kv_cache = None # regularization self.attn_dropout_p = config.attn_dropout_p self.resid_dropout = nn.Dropout(config.resid_dropout_p) def forward( self, x: torch.Tensor, freqs_cis: torch.Tensor = None, input_pos: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None ): bsz, seqlen, _ = x.shape kv_size = self.n_kv_head * self.head_dim xq, xk, xv = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) xq = xq.view(bsz, seqlen, self.n_head, self.head_dim) xk = xk.view(bsz, seqlen, self.n_kv_head, self.head_dim) xv = xv.view(bsz, seqlen, self.n_kv_head, self.head_dim) xq = apply_rotary_emb(xq, freqs_cis) xk = apply_rotary_emb(xk, freqs_cis) xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv)) if self.kv_cache is not None: keys, values = self.kv_cache.update(input_pos, xk, xv) else: keys, values = xk, xv keys = keys.repeat_interleave(self.n_head // self.n_kv_head, dim=1) values = values.repeat_interleave(self.n_head // self.n_kv_head, dim=1) output = F.scaled_dot_product_attention( xq, keys, values, attn_mask=mask, is_causal=True if mask is None else False, # is_causal=False is for KV cache dropout_p=self.attn_dropout_p if self.training else 0) output = output.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) output = self.resid_dropout(self.wo(output)) return output class TransformerBlock(nn.Module): def __init__(self, config: ModelArgs, drop_path: float): super().__init__() self.attention = Attention(config) self.feed_forward = FeedForward(config) self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward( self, x: torch.Tensor, freqs_cis: torch.Tensor, start_pos: int, mask: Optional[torch.Tensor] = None): h = x + self.drop_path(self.attention(self.attention_norm(x), freqs_cis, start_pos, mask)) out = h + self.drop_path(self.feed_forward(self.ffn_norm(h))) return out class Transformer(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.vocab_size = config.vocab_size self.n_layer = config.n_layer self.block_size = config.block_size self.num_classes = config.num_classes self.model_type = config.model_type self.cls_token_num = config.cls_token_num self.layer_internal = config.n_layer // 3 # self.adapter = Adapter(output_dim=768) # self.adapter = ViT_Adapter() # self.adapter = DeiT_Adapter() self.adapter = Dinov2_Adapter(adapter_size=config.adapter_size, condition_type=config.condition_type) # self.adapter = EVA_Adapter() if config.adapter_size == "small": self.adapter_mlp = MLP(384, config.dim, config.dim) elif config.adapter_size == 'base': self.adapter_mlp = MLP(768, config.dim, config.dim) if self.model_type == 'c2i': self.cls_embedding = LabelEmbedder(config.num_classes, config.dim, config.class_dropout_prob) elif self.model_type == 't2i': self.cls_embedding = CaptionEmbedder(config.caption_dim, config.dim, config.class_dropout_prob) else: raise Exception("please check model type") self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.tok_dropout = nn.Dropout(config.token_dropout_p) self.condition_embeddings = nn.Embedding(config.vocab_size, config.dim) self.condition_mlp = ConditionEmbedder(self.block_size, config.dim, config.class_dropout_prob, self.block_size, config.vocab_size) self.condition_layers = torch.nn.ModuleList() for layer_id in range(3): self.condition_layers.append(MLP(config.dim,config.dim,config.dim)) # transformer blocks dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.n_layer)] self.layers = torch.nn.ModuleList() for layer_id in range(config.n_layer): self.layers.append(TransformerBlock(config, dpr[layer_id])) # output layer self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) # 2d rotary pos embedding grid_size = int(self.block_size ** 0.5) assert grid_size * grid_size == self.block_size self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) # KVCache self.max_batch_size = -1 self.max_seq_length = -1 self.initialize_weights() self.condition_token = None self.mask = get_causal_mask(256) self.global_token = None self.control_strength = 1 def initialize_weights(self): # Initialize nn.Linear and nn.Embedding self.apply(self._init_weights) # Zero-out output layers: nn.init.constant_(self.output.weight, 0) def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) def setup_caches(self, max_batch_size, max_seq_length, dtype): # if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: # return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) # self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size for b in self.layers: b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_head, head_dim, dtype) causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)) self.causal_mask = causal_mask.unsqueeze(0).repeat(self.max_batch_size, 1, 1) grid_size = int(self.config.block_size ** 0.5) assert grid_size * grid_size == self.block_size self.freqs_cis = precompute_freqs_cis_2d(grid_size, self.config.dim // self.config.n_head, self.config.rope_base, self.cls_token_num) def forward( self, idx: torch.Tensor, cond_idx: torch.Tensor, # cond_idx_or_embed input_pos: Optional[torch.Tensor] = None, targets: Optional[torch.Tensor] = None, mask: Optional[torch.Tensor] = None, valid: Optional[torch.Tensor] = None, condition: Optional[torch.Tensor] = None, control_strength: Optional[int] = 1 ): if idx is not None and cond_idx is not None: # training or naive inference cond_embeddings,drop_ids = self.cls_embedding(cond_idx, train=self.training) cond_embeddings = cond_embeddings[:,:self.cls_token_num] token_embeddings = self.tok_embeddings(idx) if condition is not None: condition_embeddings = self.adapter(condition) condition_embeddings = self.adapter_mlp(condition_embeddings) self.condition_token = self.condition_mlp(condition_embeddings,train=self.training, drop_ids=drop_ids) token_embeddings = torch.cat((cond_embeddings, token_embeddings), dim=1) h = self.tok_dropout(token_embeddings) self.freqs_cis = self.freqs_cis.to(h.device) else: if cond_idx is not None: # prefill in inference token_embeddings = self.cls_embedding(cond_idx, train=self.training) token_embeddings = token_embeddings[:,:self.cls_token_num] if condition is not None: condition_embeddings = self.condition_mlp(condition,train=self.training)#.to(torch.bfloat16),train=self.training) self.condition_token = condition_embeddings self.condition_token = [self.condition_layers[0](self.condition_token), self.condition_layers[1](self.condition_token), self.condition_layers[2](self.condition_token)] else: # decode_n_tokens(kv cache) in inference token_embeddings = self.tok_embeddings(idx) bs = token_embeddings.shape[0] mask = self.causal_mask[:bs, None, input_pos] h = self.tok_dropout(token_embeddings) self.freqs_cis = self.freqs_cis if self.training: freqs_cis = self.freqs_cis[:token_embeddings.shape[1]] else: freqs_cis = self.freqs_cis[input_pos] # transformer blocks for i, layer in enumerate(self.layers): if i%self.layer_internal == 0: if self.training: h[:, self.cls_token_num-1:] = h[:, self.cls_token_num-1:] + self.condition_layers[i//self.layer_internal](self.condition_token) else: if len(input_pos)>1: # h[:, -1:] = h[:, -1:] + self.condition_layers[i//self.layer_internal](self.condition_token[:,0:1]) h[:,-1:] = h[:, -1:] + self.control_strength*self.condition_token[i//self.layer_internal][:,0:1] else: # h = h + self.condition_layers[i//self.layer_internal](self.condition_token[:,input_pos-self.cls_token_num+1]) h = h + self.control_strength*self.condition_token[i//self.layer_internal][:,input_pos-self.cls_token_num+1] h = layer(h, freqs_cis, input_pos, mask) # output layers h = self.norm(h) logits = self.output(h).float() if self.training: logits = logits[:, self.cls_token_num - 1:].contiguous() # if we are given some desired targets also calculate the loss loss = None if valid is not None: loss_all = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none') valid_all = valid[:,None].repeat(1, targets.shape[1]).view(-1) loss = (loss_all * valid_all).sum() / max(valid_all.sum(), 1) elif targets is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return logits, loss def get_fsdp_wrap_module_list(self) -> List[nn.Module]: return list(self.layers) ################################################################################# # Rotary Positional Embedding Functions # ################################################################################# # https://github.com/pytorch-labs/gpt-fast/blob/main/model.py def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000, cls_token_num=120): freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) # (seq_len, head_dim // 2) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) # (cls_token_num+seq_len, head_dim // 2, 2) cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+seq_len, head_dim // 2, 2) return cond_cache def precompute_freqs_cis_2d(grid_size: int, n_elem: int, base: int = 10000, cls_token_num=120): # split the dimension into half, one for x and one for y half_dim = n_elem // 2 freqs = 1.0 / (base ** (torch.arange(0, half_dim, 2)[: (half_dim // 2)].float() / half_dim)) t = torch.arange(grid_size, device=freqs.device) freqs = torch.outer(t, freqs) # (grid_size, head_dim // 2) freqs_grid = torch.concat([ freqs[:, None, :].expand(-1, grid_size, -1), freqs[None, :, :].expand(grid_size, -1, -1), ], dim=-1) # (grid_size, grid_size, head_dim // 2) cache_grid = torch.stack([torch.cos(freqs_grid), torch.sin(freqs_grid)], dim=-1) # (grid_size, grid_size, head_dim // 2, 2) cache = cache_grid.flatten(0, 1) cond_cache = torch.cat([torch.zeros(cls_token_num, n_elem // 2, 2), cache]) # (cls_token_num+grid_size**2, head_dim // 2, 2) return cond_cache def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor): # x: (bs, seq_len, n_head, head_dim) # freqs_cis (seq_len, head_dim // 2, 2) xshaped = x.float().reshape(*x.shape[:-1], -1, 2) # (bs, seq_len, n_head, head_dim//2, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) # (1, seq_len, 1, head_dim//2, 2) x_out2 = torch.stack([ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], dim=-1) x_out2 = x_out2.flatten(3) return x_out2.type_as(x) ################################################################################# # GPT Configs # ################################################################################# ### text-conditional def GPT_7B(**kwargs): return Transformer(ModelArgs(n_layer=32, n_head=32, dim=4096, **kwargs)) # 6.6B def GPT_3B(**kwargs): return Transformer(ModelArgs(n_layer=24, n_head=32, dim=3200, **kwargs)) # 3.1B def GPT_1B(**kwargs): return Transformer(ModelArgs(n_layer=22, n_head=32, dim=2048, **kwargs)) # 1.2B ### class-conditional def GPT_XXXL(**kwargs): return Transformer(ModelArgs(n_layer=48, n_head=40, dim=2560, **kwargs)) # 3.9B def GPT_XXL(**kwargs): return Transformer(ModelArgs(n_layer=48, n_head=24, dim=1536, **kwargs)) # 1.4B def GPT_XL(**kwargs): return Transformer(ModelArgs(n_layer=36, n_head=20, dim=1280, **kwargs)) # 775M def GPT_L(**kwargs): return Transformer(ModelArgs(n_layer=24, n_head=16, dim=1024, **kwargs)) # 343M def GPT_B(**kwargs): return Transformer(ModelArgs(n_layer=12, n_head=12, dim=768, **kwargs)) # 111M GPT_models = { 'GPT-B': GPT_B, 'GPT-L': GPT_L, 'GPT-XL': GPT_XL, 'GPT-XXL': GPT_XXL, 'GPT-XXXL': GPT_XXXL, 'GPT-1B': GPT_1B, 'GPT-3B': GPT_3B, 'GPT-7B': GPT_7B, }