# Modified from: # gpt-fast: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py # DiT: https://github.com/facebookresearch/DiT/blob/main/models.py import torch import torch.nn as nn from torch.nn import functional as F import torch._dynamo.config import torch._inductor.config import copy import time # torch._inductor.config.coordinate_descent_tuning = True # torch._inductor.config.triton.unique_kernel_names = True # torch._inductor.config.fx_graph_cache = True # Experimental feature to reduce compilation times, will be on by default in future ### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html def top_k_top_p_filtering( logits, top_k: int = 0, top_p: float = 1.0, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1, ): """Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (batch size, vocabulary size) if top_k > 0: keep only top k tokens with highest probability (top-k filtering). if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) Make sure we keep at least min_tokens_to_keep per batch example in the output From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317 """ if top_k > 0: # import pdb;pdb.set_trace() top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold (token with 0 are kept) sorted_indices_to_remove = cumulative_probs > top_p if min_tokens_to_keep > 1: # Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below) sorted_indices_to_remove[..., :min_tokens_to_keep] = 0 # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 # scatter sorted tensors to original indexing indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) logits[indices_to_remove] = filter_value return logits def sample(logits, temperature: float=1.0, top_k: int=2000, top_p: float=1.0, sample_logits=True): logits = logits[:, -1, :] / max(temperature, 1e-5) if top_k > 0 or top_p < 1.0: logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = F.softmax(logits, dim=-1) # values, indices = torch.max(probs, dim=1, keepdim=True) # mask = (probs == values).float() # probs = probs * (1 - mask) # values, indices = torch.max(probs, dim=1, keepdim=True) # mask = (probs == values).float() # probs = probs * (1 - mask) if sample_logits: # add to fix 'nan' and 'inf' probs = torch.where(torch.isnan(probs), torch.tensor(0.0), probs) probs = torch.clamp(probs, min=0, max=None) print(f'inf:{torch.any(torch.isinf(probs))}') print(f'nan: {torch.any(torch.isnan(probs))}') idx = torch.multinomial(probs, num_samples=1) else: _, idx = torch.topk(probs, k=1, dim=-1) return idx, probs def logits_to_probs(logits, temperature: float = 1.0, top_p: float=1.0, top_k: int = None, **kwargs): logits = logits / max(temperature, 1e-5) if top_k > 0 or top_p < 1.0: logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def prefill(model, cond_idx: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, condition:torch.Tensor, **sampling_kwargs): if cfg_scale > 1.0: print(cond_idx) print(input_pos) print(condition) logits, _ = model(None, cond_idx, input_pos, condition=condition) logits_combined = logits cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0) logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale else: logits, _ = model(None, cond_idx, input_pos, condition=condition) return sample(logits, **sampling_kwargs)[0] def decode_one_token(model, x: torch.Tensor, input_pos: torch.Tensor, cfg_scale: float, cfg_flag: bool, condition: torch.Tensor, **sampling_kwargs): assert input_pos.shape[-1] == 1 if cfg_scale > 1.0: x_combined = torch.cat([x, x]) logits, _ = model(x_combined, cond_idx=None, input_pos=input_pos, condition=condition) logits_combined = logits cond_logits, uncond_logits = torch.split(logits_combined, len(logits_combined) // 2, dim=0) if cfg_flag: logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale else: logits = cond_logits else: logits, _ = model(x, cond_idx=None, input_pos=input_pos, condition=None) return sample(logits, **sampling_kwargs) def decode_n_tokens( model, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, cfg_scale: float, cfg_interval: int, condition: torch.Tensor, **sampling_kwargs): new_tokens, new_probs = [], [] cfg_flag = True for i in range(num_new_tokens): with torch.backends.cuda.sdp_kernel(enable_flash=False, enable_mem_efficient=False, enable_math=True): # Actually better for Inductor to codegen attention here if cfg_interval > -1 and i > cfg_interval: cfg_flag = False next_token, next_prob = decode_one_token( model, cur_token, input_pos, cfg_scale, cfg_flag, condition=condition, **sampling_kwargs ) input_pos += 1 new_tokens.append(next_token.clone()) new_probs.append(next_prob.clone()) cur_token = next_token.view(-1, 1) return new_tokens, new_probs @torch.no_grad() def generate(model, cond, max_new_tokens, emb_masks=None, cfg_scale=1.0, cfg_interval=-1, condition=None, condition_null=None, condition_token_nums=0, **sampling_kwargs): if condition is not None: condition = model.adapter(condition) condition = model.adapter_mlp(condition) if model.model_type == 'c2i': if cfg_scale > 1.0: cond_null = torch.ones_like(cond) * model.num_classes cond_combined = torch.cat([cond, cond_null]) if condition is not None: condition_null = torch.zeros_like(condition) condition_combined = torch.cat((condition, condition_null), dim=0) else: condition_combined = None else: cond_combined = cond if condition is not None: condition_combined = condition else: condition_combined = None T = 1+condition_token_nums elif model.model_type == 't2i': if cfg_scale > 1.0: cond_null = torch.zeros_like(cond) + model.cls_embedding.uncond_embedding cond_combined = torch.cat([cond, cond_null]) if condition is not None: condition_null = torch.zeros_like(condition) condition_combined = torch.cat((condition, condition_null), dim=0) else: condition_combined = None else: cond_combined = cond if condition is not None: condition_combined = condition else: condition_combined = None T = cond.shape[1] else: raise Exception("please check model type") T_new = T + max_new_tokens max_seq_length = T_new max_batch_size = cond.shape[0] device = cond.device with torch.device(device): max_batch_size_cfg = max_batch_size * 2 if cfg_scale > 1.0 else max_batch_size model.setup_caches(max_batch_size=max_batch_size_cfg, max_seq_length=max_seq_length, dtype=model.tok_embeddings.weight.dtype) if emb_masks is not None: assert emb_masks.shape[0] == max_batch_size assert emb_masks.shape[-1] == T if cfg_scale > 1.0: model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * torch.cat([emb_masks, emb_masks]).unsqueeze(1) else: model.causal_mask[:, :, :T] = model.causal_mask[:, :, :T] * emb_masks.unsqueeze(1) eye_matrix = torch.eye(model.causal_mask.size(1), model.causal_mask.size(2), device=device) model.causal_mask[:] = model.causal_mask * (1 - eye_matrix) + eye_matrix # create an empty tensor of the expected final shape and fill in the current tokens seq = torch.empty((max_batch_size, T_new), dtype=torch.int, device=device) input_pos = torch.arange(0, T, device=device) next_token = prefill(model, cond_combined, input_pos, cfg_scale, condition_combined, **sampling_kwargs) seq[:, T:T+1] = next_token input_pos = torch.tensor([T], device=device, dtype=torch.int) generated_tokens, _ = decode_n_tokens(model, next_token, input_pos, max_new_tokens-1, cfg_scale, cfg_interval, condition=condition_combined, **sampling_kwargs) seq[:, T+1:] = torch.cat(generated_tokens, dim=1) return seq[:, T:]