from controlnet_aux import LineartDetector import torch import cv2 import numpy as np import torch.nn as nn norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class LineArt(nn.Module): def __init__(self, input_nc=3, output_nc=1, n_residual_blocks=3, sigmoid=True): super(LineArt, self).__init__() # Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features*2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 self.model1 = nn.Sequential(*model1) model2 = [] # Residual blocks for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features//2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x, cond=None): """ input: tensor (B,C,H,W) output: tensor (B,1,H,W) 0~1 """ out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out if __name__ == '__main__': import matplotlib.pyplot as plt from tqdm import tqdm apply_lineart = LineArt() apply_lineart.load_state_dict(torch.load('condition/ckpts/model.pth', map_location=torch.device('cpu'))) img = cv2.imread('condition/car_448_768.jpg') img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0).repeat(8,1,1,1).float() detected_map = apply_lineart(img) print(img.shape, img.max(),img.min(),detected_map.shape, detected_map.max(),detected_map.min()) cv2.imwrite('condition/example_lineart.jpg', 255*detected_map[0,0].cpu().detach().numpy())