originOsAI / app.py
wop's picture
Update app.py
0f62b45
from huggingface_hub import InferenceClient
import gradio as gr
import random
API_URL = "https://api-inference.huggingface.co/models/"
client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
def format_prompt(message, history):
prompt = "You are OriginOS Assistant. Be kind and helpfull. Your model is origin and version 001."
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=2048, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=2048,
minimum=64,
maximum=4096,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
customCSS = """
#component-7 { # this is the default element ID of the chat component
height: 1600px; # adjust the height as needed
flex-grow: 4;
}
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
)
demo.queue().launch(debug=True)