Spaces:
Sleeping
Sleeping
import subprocess | |
import requests | |
import string | |
import time | |
import re | |
import openai | |
import gradio as gr | |
def get_content(filepath: str) -> str: | |
url = string.Template( | |
"https://raw.githubusercontent.com/huggingface/" | |
"transformers/main/docs/source/en/$filepath" | |
).safe_substitute(filepath=filepath) | |
response = requests.get(url) | |
if response.status_code == 200: | |
content = response.text | |
return content | |
else: | |
raise ValueError("Failed to retrieve content from the URL.", url) | |
def preprocess_content(content: str) -> str: | |
# Extract text to translate from document | |
## ignore top license comment | |
to_translate = content[content.find('#'):] | |
## remove code blocks from text | |
to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL) | |
## remove markdown tables from text | |
to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE) | |
## remove empty lines from text | |
to_translate = re.sub(r'\n\n+', '\n\n', to_translate) | |
return to_translate | |
def get_full_prompt(language: str, filepath: str) -> str: | |
content = get_content(filepath) | |
to_translate = preprocess_content(content) | |
prompt = string.Template( | |
"What do these sentences about Hugging Face Transformers " | |
"(a machine learning library) mean in $language? " | |
"Please do not translate the word after a 🤗 emoji " | |
"as it is a product name.\n```md" | |
).safe_substitute(language=language) | |
return '\n'.join([prompt, to_translate.strip(), "```"]) | |
def split_markdown_sections(markdown: str) -> list: | |
# Find all titles using regular expressions | |
return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:] | |
# format is like [level, title, content, level, title, content, ...] | |
def get_anchors(divided: list) -> list: | |
anchors = [] | |
# from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302 | |
for title in divided[1::3]: | |
anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower()) | |
anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-") | |
anchors.append(f"[[{anchor}]]") | |
return anchors | |
def make_scaffold(content: str, to_translate: str) -> string.Template: | |
scaffold = content | |
for i, text in enumerate(to_translate.split('\n\n')): | |
scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1) | |
return string.Template(scaffold) | |
def fill_scaffold(filepath: str, translated: str) -> list[str]: | |
content = get_content(filepath) | |
to_translate = preprocess_content(content) | |
scaffold = make_scaffold(content, to_translate) | |
divided = split_markdown_sections(to_translate) | |
anchors = get_anchors(divided) | |
translated = split_markdown_sections(translated) | |
translated[1::3] = [ | |
f"{korean_title} {anchors[i]}" | |
for i, korean_title in enumerate(translated[1::3]) | |
] | |
translated = ''.join([ | |
''.join(translated[i*3:i*3+3]) | |
for i in range(len(translated) // 3) | |
]).split('\n\n') | |
translated_doc = scaffold.safe_substitute({ | |
f"hf_i18n_placeholder{i}": text | |
for i, text in enumerate(translated) | |
}) | |
return [content, translated_doc] | |
def translate_openai(language: str, filepath: str, api_key: str) -> list[str]: | |
content = get_content(filepath) | |
return [content, "Please use the web UI for now."] | |
raise NotImplementedError("Currently debugging output.") | |
openai.api_key = api_key | |
prompt = string.Template( | |
"What do these sentences about Hugging Face Transformers " | |
"(a machine learning library) mean in $language? " | |
"Please do not translate the word after a 🤗 emoji " | |
"as it is a product name.\n```md" | |
).safe_substitute(language=language) | |
to_translate = preprocess_content(content) | |
scaffold = make_scaffold(content, to_translate) | |
divided = split_markdown_sections(to_translate) | |
anchors = get_anchors(divided) | |
sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)] | |
reply = [] | |
for i, section in enumerate(sections): | |
chat = openai.ChatCompletion.create( | |
model = "gpt-3.5-turbo", | |
messages=[{ | |
"role": "user", | |
"content": "\n".join([prompt, section, '```']) | |
},] | |
) | |
print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins") | |
reply.append(chat.choices[0].message.content) | |
translated = split_markdown_sections('\n\n'.join(reply)) | |
print(translated[1::3], anchors) | |
translated[1::3] = [ | |
f"{korean_title} {anchors[i]}" | |
for i, korean_title in enumerate(translated[1::3]) | |
] | |
translated = ''.join([ | |
''.join(translated[i*3:i*3+3]) | |
for i in range(len(translated) // 3) | |
]).split('\n\n') | |
translated_doc = scaffold.safe_substitute({ | |
f"hf_i18n_placeholder{i}": text | |
for i, text in enumerate(translated) | |
}) | |
return translated_doc | |
demo = gr.Blocks() | |
outputs = gr.outputs.Textbox(label="Translation") | |
with demo: | |
gr.Markdown( | |
"# HuggingFace i18n \n" | |
"## made easy with this demo." | |
) | |
with gr.Row(): | |
language_input = gr.inputs.Textbox( | |
default="Korean", | |
label=" / ".join([ | |
"Target language", "langue cible", | |
"目标语", "Idioma Objetivo", | |
"도착어", "língua alvo" | |
]) | |
) | |
filepath_input = gr.inputs.Textbox( | |
default="tasks/masked_language_modeling.md", | |
label="File path of transformers document" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Web UI"): | |
prompt_button = gr.Button("Show Full Prompt", variant="primary") | |
# TODO: add with_prompt_checkbox so people can freely use other services such as DeepL or Papago. | |
gr.Markdown("1. Copy with the button right-hand side and paste into [chat.openai.com](https://chat.openai.com).") | |
prompt_output = gr.Textbox(label="Full Prompt", lines=3, show_copy_button=True) | |
# TODO: add check for segments, indicating whether user should add or remove new lines from their input. (gr.Row) | |
gr.Markdown("2. After getting the complete translation, remove randomly inserted newlines on your favorite text editor and paste the result below.") | |
ui_translated_input = gr.inputs.Textbox(label="Cleaned ChatGPT initial translation") | |
fill_button = gr.Button("Fill in scaffold", variant="primary") | |
with gr.TabItem("API (Not Implemented)"): | |
with gr.Row(): | |
api_key_input = gr.inputs.Textbox(label="Your OpenAI API Key") | |
api_call_button = gr.Button("Translate (Call API)", variant="primary") | |
with gr.Row(): | |
content_output = gr.Textbox(label="Original content", show_copy_button=True) | |
final_output = gr.Textbox(label="Draft for review", show_copy_button=True) | |
prompt_button.click(get_full_prompt, inputs=[language_input, filepath_input], outputs=prompt_output) | |
fill_button.click(fill_scaffold, inputs=[filepath_input, ui_translated_input], outputs=[content_output, final_output]) | |
api_call_button.click(translate_openai, inputs=[language_input, filepath_input, api_key_input], outputs=[content_output, final_output]) | |
demo.launch() | |