File size: 23,721 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import pickle
import random
import time
import warnings
from typing import Dict, List, Optional

import torch
from filelock import FileLock
from torch.utils.data import Dataset

from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging


logger = logging.get_logger(__name__)


DEPRECATION_WARNING = (
    "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
    "library. You can have a look at this example script for pointers: {0}"
)


class TextDataset(Dataset):
    """
    This will be superseded by a framework-agnostic approach soon.
    """

    def __init__(
        self,
        tokenizer: PreTrainedTokenizer,
        file_path: str,
        block_size: int,
        overwrite_cache=False,
        cache_dir: Optional[str] = None,
    ):
        warnings.warn(
            DEPRECATION_WARNING.format(
                "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
            ),
            FutureWarning,
        )
        if os.path.isfile(file_path) is False:
            raise ValueError(f"Input file path {file_path} not found")

        block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)

        directory, filename = os.path.split(file_path)
        cached_features_file = os.path.join(
            cache_dir if cache_dir is not None else directory,
            f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
        )

        # Make sure only the first process in distributed training processes the dataset,
        # and the others will use the cache.
        lock_path = cached_features_file + ".lock"
        with FileLock(lock_path):
            if os.path.exists(cached_features_file) and not overwrite_cache:
                start = time.time()
                with open(cached_features_file, "rb") as handle:
                    self.examples = pickle.load(handle)
                logger.info(
                    f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
                )

            else:
                logger.info(f"Creating features from dataset file at {directory}")

                self.examples = []
                with open(file_path, encoding="utf-8") as f:
                    text = f.read()

                tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))

                for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                    self.examples.append(
                        tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
                    )
                # Note that we are losing the last truncated example here for the sake of simplicity (no padding)
                # If your dataset is small, first you should look for a bigger one :-) and second you
                # can change this behavior by adding (model specific) padding.

                start = time.time()
                with open(cached_features_file, "wb") as handle:
                    pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
                logger.info(
                    f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
                )

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i) -> torch.Tensor:
        return torch.tensor(self.examples[i], dtype=torch.long)


class LineByLineTextDataset(Dataset):
    """
    This will be superseded by a framework-agnostic approach soon.
    """

    def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
        warnings.warn(
            DEPRECATION_WARNING.format(
                "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
            ),
            FutureWarning,
        )
        if os.path.isfile(file_path) is False:
            raise ValueError(f"Input file path {file_path} not found")
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info(f"Creating features from dataset file at {file_path}")

        with open(file_path, encoding="utf-8") as f:
            lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]

        batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
        self.examples = batch_encoding["input_ids"]
        self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i) -> Dict[str, torch.tensor]:
        return self.examples[i]


class LineByLineWithRefDataset(Dataset):
    """
    This will be superseded by a framework-agnostic approach soon.
    """

    def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
        warnings.warn(
            DEPRECATION_WARNING.format(
                "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
            ),
            FutureWarning,
        )
        if os.path.isfile(file_path) is False:
            raise ValueError(f"Input file path {file_path} not found")
        if os.path.isfile(ref_path) is False:
            raise ValueError(f"Ref file path {file_path} not found")
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info(f"Creating features from dataset file at {file_path}")
        logger.info(f"Use ref segment results at {ref_path}")
        with open(file_path, encoding="utf-8") as f:
            data = f.readlines()  # use this method to avoid delimiter '\u2029' to split a line
        data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
        # Get ref inf from file
        with open(ref_path, encoding="utf-8") as f:
            ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
        if len(data) != len(ref):
            raise ValueError(
                f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
                f"while length of {ref_path} is {len(ref)}"
            )

        batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
        self.examples = batch_encoding["input_ids"]
        self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]

        n = len(self.examples)
        for i in range(n):
            self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i) -> Dict[str, torch.tensor]:
        return self.examples[i]


class LineByLineWithSOPTextDataset(Dataset):
    """
    Dataset for sentence order prediction task, prepare sentence pairs for SOP task
    """

    def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
        warnings.warn(
            DEPRECATION_WARNING.format(
                "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
            ),
            FutureWarning,
        )
        if os.path.isdir(file_dir) is False:
            raise ValueError(f"{file_dir} is not a directory")
        logger.info(f"Creating features from dataset file folder at {file_dir}")
        self.examples = []
        # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
        # file path looks like ./dataset/wiki_1, ./dataset/wiki_2
        for file_name in os.listdir(file_dir):
            file_path = os.path.join(file_dir, file_name)
            if os.path.isfile(file_path) is False:
                raise ValueError(f"{file_path} is not a file")
            article_open = False
            with open(file_path, encoding="utf-8") as f:
                original_lines = f.readlines()
                article_lines = []
                for line in original_lines:
                    if "<doc id=" in line:
                        article_open = True
                    elif "</doc>" in line:
                        article_open = False
                        document = [
                            tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
                            for line in article_lines[1:]
                            if (len(line) > 0 and not line.isspace())
                        ]

                        examples = self.create_examples_from_document(document, block_size, tokenizer)
                        self.examples.extend(examples)
                        article_lines = []
                    else:
                        if article_open:
                            article_lines.append(line)

        logger.info("Dataset parse finished.")

    def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
        """Creates examples for a single document."""

        # Account for special tokens
        max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)

        # We *usually* want to fill up the entire sequence since we are padding
        # to `block_size` anyways, so short sequences are generally wasted
        # computation. However, we *sometimes*
        # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
        # sequences to minimize the mismatch between pretraining and fine-tuning.
        # The `target_seq_length` is just a rough target however, whereas
        # `block_size` is a hard limit.
        target_seq_length = max_num_tokens
        if random.random() < short_seq_prob:
            target_seq_length = random.randint(2, max_num_tokens)

        # We DON'T just concatenate all of the tokens from a document into a long
        # sequence and choose an arbitrary split point because this would make the
        # next sentence prediction task too easy. Instead, we split the input into
        # segments "A" and "B" based on the actual "sentences" provided by the user
        # input.
        examples = []
        current_chunk = []  # a buffer stored current working segments
        current_length = 0
        i = 0
        while i < len(document):
            segment = document[i]  # get a segment
            if not segment:
                i += 1
                continue
            current_chunk.append(segment)  # add a segment to current chunk
            current_length += len(segment)  # overall token length
            # if current length goes to the target length or reaches the end of file, start building token a and b
            if i == len(document) - 1 or current_length >= target_seq_length:
                if current_chunk:
                    # `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
                    a_end = 1
                    # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
                    if len(current_chunk) >= 2:
                        a_end = random.randint(1, len(current_chunk) - 1)
                    # token a
                    tokens_a = []
                    for j in range(a_end):
                        tokens_a.extend(current_chunk[j])

                    # token b
                    tokens_b = []
                    for j in range(a_end, len(current_chunk)):
                        tokens_b.extend(current_chunk[j])

                    if len(tokens_a) == 0 or len(tokens_b) == 0:
                        continue

                    # switch tokens_a and tokens_b randomly
                    if random.random() < 0.5:
                        is_next = False
                        tokens_a, tokens_b = tokens_b, tokens_a
                    else:
                        is_next = True

                    def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
                        """Truncates a pair of sequences to a maximum sequence length."""
                        while True:
                            total_length = len(tokens_a) + len(tokens_b)
                            if total_length <= max_num_tokens:
                                break
                            trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
                            if not (len(trunc_tokens) >= 1):
                                raise ValueError("Sequence length to be truncated must be no less than one")
                            # We want to sometimes truncate from the front and sometimes from the
                            # back to add more randomness and avoid biases.
                            if random.random() < 0.5:
                                del trunc_tokens[0]
                            else:
                                trunc_tokens.pop()

                    truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
                    if not (len(tokens_a) >= 1):
                        raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
                    if not (len(tokens_b) >= 1):
                        raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")

                    # add special tokens
                    input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
                    # add token type ids, 0 for sentence a, 1 for sentence b
                    token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)

                    example = {
                        "input_ids": torch.tensor(input_ids, dtype=torch.long),
                        "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
                        "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
                    }
                    examples.append(example)
                current_chunk = []  # clear current chunk
                current_length = 0  # reset current text length
            i += 1  # go to next line
        return examples

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i) -> Dict[str, torch.tensor]:
        return self.examples[i]


class TextDatasetForNextSentencePrediction(Dataset):
    """
    This will be superseded by a framework-agnostic approach soon.
    """

    def __init__(
        self,
        tokenizer: PreTrainedTokenizer,
        file_path: str,
        block_size: int,
        overwrite_cache=False,
        short_seq_probability=0.1,
        nsp_probability=0.5,
    ):
        warnings.warn(
            DEPRECATION_WARNING.format(
                "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
            ),
            FutureWarning,
        )
        if not os.path.isfile(file_path):
            raise ValueError(f"Input file path {file_path} not found")

        self.short_seq_probability = short_seq_probability
        self.nsp_probability = nsp_probability

        directory, filename = os.path.split(file_path)
        cached_features_file = os.path.join(
            directory,
            f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
        )

        self.tokenizer = tokenizer

        # Make sure only the first process in distributed training processes the dataset,
        # and the others will use the cache.
        lock_path = cached_features_file + ".lock"

        # Input file format:
        # (1) One sentence per line. These should ideally be actual sentences, not
        # entire paragraphs or arbitrary spans of text. (Because we use the
        # sentence boundaries for the "next sentence prediction" task).
        # (2) Blank lines between documents. Document boundaries are needed so
        # that the "next sentence prediction" task doesn't span between documents.
        #
        # Example:
        # I am very happy.
        # Here is the second sentence.
        #
        # A new document.

        with FileLock(lock_path):
            if os.path.exists(cached_features_file) and not overwrite_cache:
                start = time.time()
                with open(cached_features_file, "rb") as handle:
                    self.examples = pickle.load(handle)
                logger.info(
                    f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
                )
            else:
                logger.info(f"Creating features from dataset file at {directory}")

                self.documents = [[]]
                with open(file_path, encoding="utf-8") as f:
                    while True:
                        line = f.readline()
                        if not line:
                            break
                        line = line.strip()

                        # Empty lines are used as document delimiters
                        if not line and len(self.documents[-1]) != 0:
                            self.documents.append([])
                        tokens = tokenizer.tokenize(line)
                        tokens = tokenizer.convert_tokens_to_ids(tokens)
                        if tokens:
                            self.documents[-1].append(tokens)

                logger.info(f"Creating examples from {len(self.documents)} documents.")
                self.examples = []
                for doc_index, document in enumerate(self.documents):
                    self.create_examples_from_document(document, doc_index, block_size)

                start = time.time()
                with open(cached_features_file, "wb") as handle:
                    pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
                logger.info(
                    f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
                )

    def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
        """Creates examples for a single document."""

        max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)

        # We *usually* want to fill up the entire sequence since we are padding
        # to `block_size` anyways, so short sequences are generally wasted
        # computation. However, we *sometimes*
        # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
        # sequences to minimize the mismatch between pretraining and fine-tuning.
        # The `target_seq_length` is just a rough target however, whereas
        # `block_size` is a hard limit.
        target_seq_length = max_num_tokens
        if random.random() < self.short_seq_probability:
            target_seq_length = random.randint(2, max_num_tokens)

        current_chunk = []  # a buffer stored current working segments
        current_length = 0
        i = 0

        while i < len(document):
            segment = document[i]
            current_chunk.append(segment)
            current_length += len(segment)
            if i == len(document) - 1 or current_length >= target_seq_length:
                if current_chunk:
                    # `a_end` is how many segments from `current_chunk` go into the `A`
                    # (first) sentence.
                    a_end = 1
                    if len(current_chunk) >= 2:
                        a_end = random.randint(1, len(current_chunk) - 1)

                    tokens_a = []
                    for j in range(a_end):
                        tokens_a.extend(current_chunk[j])

                    tokens_b = []

                    if len(current_chunk) == 1 or random.random() < self.nsp_probability:
                        is_random_next = True
                        target_b_length = target_seq_length - len(tokens_a)

                        # This should rarely go for more than one iteration for large
                        # corpora. However, just to be careful, we try to make sure that
                        # the random document is not the same as the document
                        # we're processing.
                        for _ in range(10):
                            random_document_index = random.randint(0, len(self.documents) - 1)
                            if random_document_index != doc_index:
                                break

                        random_document = self.documents[random_document_index]
                        random_start = random.randint(0, len(random_document) - 1)
                        for j in range(random_start, len(random_document)):
                            tokens_b.extend(random_document[j])
                            if len(tokens_b) >= target_b_length:
                                break
                        # We didn't actually use these segments so we "put them back" so
                        # they don't go to waste.
                        num_unused_segments = len(current_chunk) - a_end
                        i -= num_unused_segments
                    # Actual next
                    else:
                        is_random_next = False
                        for j in range(a_end, len(current_chunk)):
                            tokens_b.extend(current_chunk[j])

                    if not (len(tokens_a) >= 1):
                        raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
                    if not (len(tokens_b) >= 1):
                        raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")

                    # add special tokens
                    input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
                    # add token type ids, 0 for sentence a, 1 for sentence b
                    token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)

                    example = {
                        "input_ids": torch.tensor(input_ids, dtype=torch.long),
                        "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
                        "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
                    }

                    self.examples.append(example)

                current_chunk = []
                current_length = 0

            i += 1

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        return self.examples[i]