Spaces:
Runtime error
Runtime error
File size: 9,042 Bytes
bd50af0 2a71ebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import random
import numpy as np
import os
import requests
import torch
import torchvision.transforms as torchvision_T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
import ast
colors = [
(0, 255, 0),
(0, 0, 255),
(255, 255, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
(255, 0, 0),
]
color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None, entity_index=-1):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = torchvision_T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(entities) == 0:
return image
indices = list(range(len(entities)))
if entity_index >= 0:
indices = [entity_index]
# Not to show too many bboxes
entities = entities[:len(color_map)]
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 1
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
color_id += 1
if entity_idx not in indices:
continue
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()
return pil_image
def load_kosmos_model(device):
ckpt = "ydshieh/kosmos-2-patch14-224"
kosmos_model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True).to(device)
kosmos_processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
return kosmos_model, kosmos_processor
def kosmos_generate_predictions(image_input, text_input, kosmos_model, kosmos_processor):
if kosmos_model is None:
return None, None, None
# Save the image and load it again to match the original Kosmos-2 demo.
# (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
user_image_path = "/tmp/user_input_test_image.jpg"
image_input.save(user_image_path)
# This might give different results from the original argument `image_input`
image_input = Image.open(user_image_path)
if text_input == "Brief":
text_input = "<grounding>An image of"
elif text_input == "Detailed":
text_input = "<grounding>Describe this image in detail:"
else:
text_input = f"<grounding>{text_input}"
inputs = kosmos_processor(text=text_input, images=image_input, return_tensors="pt")
generated_ids = kosmos_model.generate(
pixel_values=inputs["pixel_values"].to("cuda"),
input_ids=inputs["input_ids"][:, :-1].to("cuda"),
attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
img_features=None,
img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
use_cache=True,
max_new_tokens=128,
)
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = kosmos_processor.post_process_generation(generated_text)
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=False)
color_id = -1
entity_info = []
filtered_entities = []
for entity in entities:
entity_name, (start, end), bboxes = entity
if start == end:
# skip bounding bbox without a `phrase` associated
continue
color_id += 1
# for bbox_id, _ in enumerate(bboxes):
# if start is None and bbox_id > 0:
# color_id += 1
entity_info.append(((start, end), color_id))
filtered_entities.append(entity)
colored_text = []
prev_start = 0
end = 0
for idx, ((start, end), color_id) in enumerate(entity_info):
if start > prev_start:
colored_text.append((processed_text[prev_start:start], None))
colored_text.append((processed_text[start:end], f"{color_id}"))
prev_start = end
if end < len(processed_text):
colored_text.append((processed_text[end:len(processed_text)], None))
return annotated_image, colored_text, str(filtered_entities)
|