File size: 11,678 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#include "cuda_kernel.h"

//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////

__global__ void index_max_cuda_kernel(
  float *index_vals,       // [batch_size, 32, num_block]
  int   *indices,        // [batch_size, num_block]
  float *max_vals,        // [batch_size, A_num_block * 32]
  float *max_vals_scatter,   // [batch_size, 32, num_block]
  long batch_size,
  long A_num_block,
  long B_num_block,
  long num_block
) {

  long batch_idx = blockIdx.x;

  long thread_idx = threadIdx.x;
  long num_thread = blockDim.x;

  extern __shared__ float buffer[];
  int *max_buffer = (int*)buffer;

  for (int i = 0; i < A_num_block * 32; i = i + num_thread) {
    int idx = i + thread_idx;
    if (idx < A_num_block * 32) {
      max_buffer[idx] = -1e8;
    }
  }
  __syncthreads();

  int *indices_pt = &indices[batch_idx * num_block];
  float *index_vals_pt = &index_vals[batch_idx * num_block * 32];

  for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) {
    int idx = idx_start + thread_idx;
    int A_block_idx = indices_pt[idx % num_block] / B_num_block;
    atomicMax(&max_buffer[A_block_idx * 32 + idx / num_block], (int)(index_vals_pt[idx] * 1000));
  }
  __syncthreads();
  
  float *max_vals_pt = &max_vals[batch_idx * A_num_block * 32];
  for (int i = 0; i < A_num_block * 32; i = i + num_thread) {
    int idx = i + thread_idx;
    if (idx < A_num_block * 32) {
      max_vals_pt[idx] = (float)max_buffer[idx] / 1000.;
    }
  }
  
  float *max_vals_scatter_pt = &max_vals_scatter[batch_idx * num_block * 32];
  for (int idx_start = 0; idx_start < 32 * num_block; idx_start = idx_start + num_thread) {
    int idx = idx_start + thread_idx;
    int A_block_idx = indices_pt[idx % num_block] / B_num_block;
    max_vals_scatter_pt[idx] = (float)max_buffer[A_block_idx * 32 + idx / num_block] / 1000.;
  }

}

__global__ void mm_to_sparse_cuda_kernel(
  float *dense_A,   // [batch_size, A_num_block, dim, 32]
  float *dense_B,   // [batch_size, B_num_block, dim, 32]
  int   *indices,   // [batch_size, num_block]
  float *sparse_C,  // [batch_size, num_block, 32, 32]
  long batch_size,
  long A_num_block,
  long B_num_block,
  long dim,
  long num_block
) {

  long batch_idx = blockIdx.y;
  long block_idx = blockIdx.x * blockDim.y + threadIdx.y;

  long thread_idx = threadIdx.x;

  __shared__ float buffer[4096];
  float *A_buffer = &buffer[threadIdx.y * 1024]; // [2, 8, 32]
  float *B_buffer = &buffer[threadIdx.y * 1024 + 512]; // [2, 8, 32]

  long batch_idx__block_idx = batch_idx * num_block + block_idx;

  long AB_block_idx = indices[batch_idx__block_idx];
  float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * dim * 32];
  float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * dim * 32];

  int reg_1_idx = thread_idx / 8;    // [0000000011111111222222223333333344444444555555556666666677777777]
  int reg_2_idx = thread_idx % 8;    // [0123456701234567012345670123456701234567012345670123456701234567]

  float reg_1[8];
  float reg_2[8];

  float reg_array[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

  #pragma unroll
  for (int i = 0; i < 4; i++) {
    A_buffer[i * 64 + thread_idx] = dense_A_pt[i * 64 + thread_idx];
    B_buffer[i * 64 + thread_idx] = dense_B_pt[i * 64 + thread_idx];
  }

  __syncthreads();

  #pragma unroll
  for (int i = 0; i < 4; i++) {
    reg_1[i] = A_buffer[reg_1_idx * 4 + i];
    reg_2[i] = B_buffer[reg_2_idx * 4 + i];
  }

  for (int dim_stride = 1; dim_stride < (dim / 8); dim_stride++) {

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      A_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_A_pt[dim_stride * 256 + i * 64 + thread_idx];
      B_buffer[(dim_stride % 2) * 256 + i * 64 + thread_idx] = dense_B_pt[dim_stride * 256 + i * 64 + thread_idx];
    }

    #pragma unroll
    for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) {
      #pragma unroll
      for (int i = 0; i < 4; i++) {
        reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_1_idx * 4 + i];
        reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[((dim_stride - 1) % 2) * 256 + mini_dim_idx * 32 + reg_2_idx * 4 + i];
      }
      #pragma unroll
      for (int i = 0; i < 4; i++) {
        #pragma unroll
        for (int j = 0; j < 4; j++) {
          reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
        }
      }
    }

    __syncthreads();

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      reg_1[i] = A_buffer[(dim_stride % 2) * 256 + reg_1_idx * 4 + i];
      reg_2[i] = B_buffer[(dim_stride % 2) * 256 + reg_2_idx * 4 + i];
    }

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      #pragma unroll
      for (int j = 0; j < 4; j++) {
        reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
      }
    }

  }

  #pragma unroll
  for (int mini_dim_idx = 1; mini_dim_idx < 8; mini_dim_idx++) {
    #pragma unroll
    for (int i = 0; i < 4; i++) {
      reg_1[(mini_dim_idx % 2) * 4 + i] = A_buffer[256 + mini_dim_idx * 32 + reg_1_idx * 4 + i];
      reg_2[(mini_dim_idx % 2) * 4 + i] = B_buffer[256 + mini_dim_idx * 32 + reg_2_idx * 4 + i];
    }
    #pragma unroll
    for (int i = 0; i < 4; i++) {
      #pragma unroll
      for (int j = 0; j < 4; j++) {
        reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
      }
    }
  }
  #pragma unroll
  for (int i = 0; i < 4; i++) {
    #pragma unroll
    for (int j = 0; j < 4; j++) {
      reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
    }
  }
  __syncthreads();

  float *C_buffer = &buffer[threadIdx.y * 1024]; // [32, 32]

  #pragma unroll
  for (int i = 0; i < 4; i++) {
    #pragma unroll
    for (int j = 0; j < 4; j++) {
      C_buffer[(reg_2_idx * 4 + j) * 32 + reg_1_idx * 4 + i] = reg_array[i * 4 + j];
    }
  }
  __syncthreads();

  float *sparse_C_pt = &sparse_C[batch_idx__block_idx * 1024];

  #pragma unroll
  for (int i = 0; i < 16; i++) {
    sparse_C_pt[i * 64 + thread_idx] = C_buffer[i * 64 + thread_idx];
  }

}

__global__ void sparse_dense_mm_cuda_kernel(
  float *sparse_A,  // [batch_size, num_block, 32, 32]
  int   *indices,   // [batch_size, num_block]
  float *dense_B,   // [batch_size, B_num_block, dim, 32]
  float *dense_C,   // [batch_size, A_num_block, dim, 32]
  long batch_size,
  long A_num_block,
  long B_num_block,
  long dim,
  long num_block
) {

  long batch_idx = blockIdx.y;
  long block_idx = blockIdx.x * blockDim.y + threadIdx.y;

  long thread_idx = threadIdx.x;

  __shared__ float buffer[6144];
  float *A_buffer = &buffer[threadIdx.y * 3072]; // [32, 32]
  float *B_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [32, 64]

  long batch_idx__block_idx = batch_idx * num_block + block_idx;

  float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024];
  #pragma unroll
  for (int i = 0; i < 8; i++) {
    A_buffer[i * 128 + thread_idx] = sparse_A_pt[i * 128 + thread_idx];
  }

  long AB_block_idx = indices[batch_idx__block_idx];
  float *dense_B_pt = &dense_B[(batch_idx * B_num_block + AB_block_idx % B_num_block) * 32 * dim];
  float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32 * dim];

  // [0000000011111111222222223333333344444444555555556666666677777777]
  // [0123456701234567012345670123456701234567012345670123456701234567]
  int reg_1_idx = thread_idx / 8;
  int reg_2_idx = thread_idx % 8;

  float reg_1[8];
  float reg_2[8];

  float reg_array[16];

  for (int dim_stride = 0; dim_stride < dim; dim_stride = dim_stride + 64) {

    #pragma unroll
    for (int i = 0; i < 16; i++) {
      B_buffer[i * 128 + thread_idx] = dense_B_pt[dim_stride * 32 + i * 128 + thread_idx];
    }

    #pragma unroll
    for (int i = 0; i < 16; i++) {
      reg_array[i] = 0;
    }

    __syncthreads();

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      reg_1[i] = B_buffer[(reg_1_idx * 4 + i) * 32];
      reg_2[i] = A_buffer[reg_2_idx * 4 + i];
    }

    #pragma unroll
    for (int mini_dim_idx = 1; mini_dim_idx < 32; mini_dim_idx++) {
      #pragma unroll
      for (int i = 0; i < 4; i++) {
        reg_1[(mini_dim_idx % 2) * 4 + i] = B_buffer[(reg_1_idx * 4 + i) * 32 + mini_dim_idx];
        reg_2[(mini_dim_idx % 2) * 4 + i] = A_buffer[mini_dim_idx * 32 + reg_2_idx * 4 + i];
      }
      #pragma unroll
      for (int i = 0; i < 4; i++) {
        #pragma unroll
        for (int j = 0; j < 4; j++) {
          reg_array[i * 4 + j] += reg_1[((mini_dim_idx - 1) % 2) * 4 + i] * reg_2[((mini_dim_idx - 1) % 2) * 4 + j];
        }
      }
    }

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      #pragma unroll
      for (int j = 0; j < 4; j++) {
        reg_array[i * 4 + j] += reg_1[4 + i] * reg_2[4 + j];
      }
    }

    __syncthreads();

    float *C_buffer = &buffer[threadIdx.y * 3072 + 1024]; // [64, 32]

    #pragma unroll
    for (int i = 0; i < 4; i++) {
      #pragma unroll
      for (int j = 0; j < 4; j++) {
        C_buffer[(reg_1_idx * 4 + i) * 32 + reg_2_idx * 4 + j] = reg_array[i * 4 + j];
      }
    }
    __syncthreads();

    #pragma unroll
    for (int i = 0; i < 16; i++) {
      atomicAdd(&dense_C_pt[dim_stride * 32 + i * 128 + thread_idx], C_buffer[i * 128 + thread_idx]);
    }
    __syncthreads();

  }

}


__global__ void reduce_sum_cuda_kernel(
  float *sparse_A,  // [batch_size, num_block, 32, 32]
  int   *indices,   // [batch_size, num_block]
  float *dense_C,   // [batch_size, A_num_block, 32]
  long batch_size,
  long A_num_block,
  long B_num_block,
  long num_block
) {

  long batch_idx = blockIdx.y;
  long block_idx = blockIdx.x * blockDim.y + threadIdx.y;

  long thread_idx = threadIdx.x;

  long batch_idx__block_idx = batch_idx * num_block + block_idx;

  long AB_block_idx = indices[batch_idx__block_idx];
  float *sparse_A_pt = &sparse_A[batch_idx__block_idx * 1024];

  float reg_array[16];
  float value = 0;

  #pragma unroll
  for (int i = 0; i < 8; i++) {
    reg_array[i] = sparse_A_pt[i * 32 + thread_idx];
  }
  #pragma unroll
  for (int stride = 8; stride < 32; stride = stride + 8) {
    #pragma unroll
    for (int i = 0; i < 8; i++) {
      reg_array[(stride + i) % 16] = sparse_A_pt[(stride + i) * 32 + thread_idx];
    }
    #pragma unroll
    for (int i = 0; i < 8; i++) {
      value = value + reg_array[(stride - 8 + i) % 16];
    }
  }
  #pragma unroll
  for (int i = 0; i < 8; i++) {
    value = value + reg_array[8 + i];
  }

  float *dense_C_pt = &dense_C[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32];

  atomicAdd(&dense_C_pt[thread_idx], value);

}

__global__ void scatter_cuda_kernel(
  float *dense_A,   // [batch_size, A_num_block, 32]
  int   *indices,   // [batch_size, num_block]
  float *sparse_C,  // [batch_size, num_block, 32, 32]
  long batch_size,
  long A_num_block,
  long B_num_block,
  long num_block
) {

  long batch_idx = blockIdx.y;
  long block_idx = blockIdx.x * blockDim.y + threadIdx.y;

  long thread_idx = threadIdx.x;

  long batch_idx__block_idx = batch_idx * num_block + block_idx;

  long AB_block_idx = indices[batch_idx__block_idx];
  float *dense_A_pt = &dense_A[(batch_idx * A_num_block + AB_block_idx / B_num_block) * 32];
  float *sparse_C_pt = &sparse_C[(batch_idx * num_block + block_idx) * 1024];

  float value = dense_A_pt[thread_idx];

  #pragma unroll
  for (int i = 0; i < 32; i++) {
    sparse_C_pt[i * 32 + thread_idx] = value;
  }

}