File size: 13,046 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" BARK model configuration"""

import os
from typing import Dict, Optional, Union

from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings, logging
from ..auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


BARK_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "suno/bark-small": "https://huggingface.co/suno/bark-small/resolve/main/config.json",
    "suno/bark": "https://huggingface.co/suno/bark/resolve/main/config.json",
}

BARK_SUBMODELCONFIG_START_DOCSTRING = """
    This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        block_size (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        input_vocab_size (`int`, *optional*, defaults to 10_048):
            Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
            regards to the chosen sub-model.
        output_vocab_size (`int`, *optional*, defaults to 10_048):
            Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
            by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
            with regards to the chosen sub-model.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the given sub-model.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer architecture.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the linear layers and layer norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
"""


class BarkSubModelConfig(PretrainedConfig):
    model_type = "bark_module"
    keys_to_ignore_at_inference = ["past_key_values"]

    attribute_map = {
        "num_attention_heads": "num_heads",
        "num_hidden_layers": "num_layers",
        "vocab_size": "input_vocab_size",
        "window_size": "block_size",
    }

    def __init__(
        self,
        block_size=1024,
        input_vocab_size=10_048,
        output_vocab_size=10_048,
        num_layers=12,
        num_heads=12,
        hidden_size=768,
        dropout=0.0,
        bias=True,  # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
        initializer_range=0.02,
        use_cache=True,
        **kwargs,
    ):
        self.block_size = block_size
        self.input_vocab_size = input_vocab_size
        self.output_vocab_size = output_vocab_size
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.dropout = dropout
        self.bias = bias
        self.use_cache = use_cache
        self.initializer_range = initializer_range

        super().__init__(**kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        **kwargs,
    ) -> "PretrainedConfig":
        kwargs["cache_dir"] = cache_dir
        kwargs["force_download"] = force_download
        kwargs["local_files_only"] = local_files_only
        kwargs["revision"] = revision

        cls._set_token_in_kwargs(kwargs, token)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the config dict if we are loading from Bark
        if config_dict.get("model_type") == "bark":
            config_dict = config_dict[f"{cls.model_type}_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


@add_start_docstrings(
    BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkSemanticConfig", model="BarkSemanticModel"),
    """
    Example:

    ```python
    >>> from transformers import BarkSemanticConfig, BarkSemanticModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkSemanticConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkSemanticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```""",
)
class BarkSemanticConfig(BarkSubModelConfig):
    model_type = "semantic"


@add_start_docstrings(
    BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkCoarseConfig", model="BarkCoarseModel"),
    """
    Example:

    ```python
    >>> from transformers import BarkCoarseConfig, BarkCoarseModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkCoarseConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkCoarseModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```""",
)
class BarkCoarseConfig(BarkSubModelConfig):
    model_type = "coarse_acoustics"


@add_start_docstrings(
    BARK_SUBMODELCONFIG_START_DOCSTRING.format(config="BarkFineConfig", model="BarkFineModel"),
    """
        n_codes_total (`int`, *optional*, defaults to 8):
            The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
        n_codes_given (`int`, *optional*, defaults to 1):
            The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
            sub-models.
    Example:

    ```python
    >>> from transformers import BarkFineConfig, BarkFineModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkFineConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkFineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```""",
)
class BarkFineConfig(BarkSubModelConfig):
    model_type = "fine_acoustics"

    def __init__(self, tie_word_embeddings=True, n_codes_total=8, n_codes_given=1, **kwargs):
        self.n_codes_total = n_codes_total
        self.n_codes_given = n_codes_given

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)


class BarkConfig(PretrainedConfig):
    """
    This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
    model according to the specified sub-models configurations, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
    [suno/bark](https://huggingface.co/suno/bark) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
    semantic_config ([`BarkSemanticConfig`], *optional*):
        Configuration of the underlying semantic sub-model.
    coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
        Configuration of the underlying coarse acoustics sub-model.
    fine_acoustics_config ([`BarkFineConfig`], *optional*):
        Configuration of the underlying fine acoustics sub-model.
    codec_config ([`AutoConfig`], *optional*):
        Configuration of the underlying codec sub-model.

    Example:

    ```python
    >>> from transformers import (
    ...     BarkSemanticConfig,
    ...     BarkCoarseConfig,
    ...     BarkFineConfig,
    ...     BarkModel,
    ...     BarkConfig,
    ...     AutoConfig,
    ... )

    >>> # Initializing Bark sub-modules configurations.
    >>> semantic_config = BarkSemanticConfig()
    >>> coarse_acoustics_config = BarkCoarseConfig()
    >>> fine_acoustics_config = BarkFineConfig()
    >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")


    >>> # Initializing a Bark module style configuration
    >>> configuration = BarkConfig.from_sub_model_configs(
    ...     semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
    ... )

    >>> # Initializing a model (with random weights)
    >>> model = BarkModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    """

    model_type = "bark"

    def __init__(
        self,
        semantic_config: Dict = None,
        coarse_acoustics_config: Dict = None,
        fine_acoustics_config: Dict = None,
        codec_config: Dict = None,
        initializer_range=0.02,
        **kwargs,
    ):
        if semantic_config is None:
            semantic_config = {}
            logger.info("semantic_config is None. initializing the semantic model with default values.")

        if coarse_acoustics_config is None:
            coarse_acoustics_config = {}
            logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.")

        if fine_acoustics_config is None:
            fine_acoustics_config = {}
            logger.info("fine_acoustics_config is None. initializing the fine model with default values.")

        if codec_config is None:
            codec_config = {}
            logger.info("codec_config is None. initializing the codec model with default values.")

        self.semantic_config = BarkSemanticConfig(**semantic_config)
        self.coarse_acoustics_config = BarkCoarseConfig(**coarse_acoustics_config)
        self.fine_acoustics_config = BarkFineConfig(**fine_acoustics_config)
        codec_model_type = codec_config["model_type"] if "model_type" in codec_config else "encodec"
        self.codec_config = CONFIG_MAPPING[codec_model_type](**codec_config)

        self.initializer_range = initializer_range

        super().__init__(**kwargs)

    @classmethod
    def from_sub_model_configs(
        cls,
        semantic_config: BarkSemanticConfig,
        coarse_acoustics_config: BarkCoarseConfig,
        fine_acoustics_config: BarkFineConfig,
        codec_config: PretrainedConfig,
        **kwargs,
    ):
        r"""
        Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.

        Returns:
            [`BarkConfig`]: An instance of a configuration object
        """
        return cls(
            semantic_config=semantic_config.to_dict(),
            coarse_acoustics_config=coarse_acoustics_config.to_dict(),
            fine_acoustics_config=fine_acoustics_config.to_dict(),
            codec_config=codec_config.to_dict(),
            **kwargs,
        )