Spaces:
Runtime error
Runtime error
File size: 73,331 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 |
# coding=utf-8
# Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch BARK model."""
import math
from typing import Dict, Optional, Tuple, Union
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from ...generation.logits_process import AlternatingCodebooksLogitsProcessor, SuppressTokensLogitsProcessor
from ...modeling_outputs import CausalLMOutputWithPast, MaskedLMOutput
from ...modeling_utils import PreTrainedModel, get_parameter_device
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_accelerate_available,
logging,
)
from ..auto import AutoModel
from .configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
BarkSubModelConfig,
)
from .generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkSemanticGenerationConfig,
)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "suno/bark-small"
_CONFIG_FOR_DOC = "BarkConfig"
BARK_PRETRAINED_MODEL_ARCHIVE_LIST = [
"suno/bark-small",
"suno/bark",
# See all Bark models at https://huggingface.co/models?filter=bark
]
class BarkSelfAttention(nn.Module):
# adapted from GPTNeoSelfAttention and Bark code
# BarkSelfAttention can have two attention type, i.e full attention or causal attention
def __init__(self, config, is_causal=False):
super().__init__()
# regularization
self.dropout = config.dropout
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.embed_dim = config.hidden_size
self.num_heads = config.num_heads
self.head_dim = self.embed_dim // self.num_heads
if config.hidden_size % config.num_heads != 0:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
# key, query, value projections for all heads, but in a batch
self.att_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias)
# output projection
self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias)
self.is_causal = is_causal
if is_causal:
block_size = config.block_size
bias = torch.tril(torch.ones((block_size, block_size), dtype=bool)).view(1, 1, block_size, block_size)
self.register_buffer("bias", bias)
# Copied from transformers.models.gpt_neo.modeling_gpt_neo.GPTNeoSelfAttention._split_heads
def _split_heads(self, tensor, num_heads, attn_head_size):
"""
Splits hidden_size dim into attn_head_size and num_heads
"""
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def _merge_heads(self, tensor, num_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden_size
"""
# re-assemble all head outputs side by side
# (batch, num_heads, seq_len, attn_head_size) -> (batch, seq_len, num_heads*attn_head_size)
tensor = tensor.transpose(1, 2).contiguous()
tensor = tensor.view(tensor.size()[:-2] + (num_heads * attn_head_size,))
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# unlike GPTNeo's SelfAttention, divide by the square root of the dimension of the query and the key
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * (1.0 / math.sqrt(self.head_dim))
if self.is_causal:
query_length, key_length = query.size(-2), key.size(-2)
# fill the upper left part of the attention weights with inf
attn_weights = attn_weights.masked_fill(
self.bias[:, :, key_length - query_length : key_length, :key_length] == 0,
torch.finfo(attn_weights.dtype).min,
)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = attn_weights.to(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
# (batch, num_heads, seq_len, seq_len) x (batch, num_heads, seq_len, attn_head_size)
# -> (batch, num_heads, seq_len, attn_head_size)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def forward(
self,
hidden_states,
attention_mask=None,
past_key_values=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
query, key, value = self.att_proj(hidden_states).split(self.embed_dim, dim=2)
query = self._split_heads(query, self.num_heads, self.head_dim)
key = self._split_heads(key, self.num_heads, self.head_dim)
value = self._split_heads(value, self.num_heads, self.head_dim)
if past_key_values is not None:
past_key = past_key_values[0]
past_value = past_key_values[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
class BarkLayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False."""
def __init__(self, hidden_size, bias=True):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, eps=1e-5)
class BarkMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.in_proj = nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=config.bias)
self.out_proj = nn.Linear(4 * config.hidden_size, config.hidden_size, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
self.gelu = nn.GELU()
def forward(self, hidden_states):
hidden_states = self.in_proj(hidden_states)
hidden_states = self.gelu(hidden_states)
hidden_states = self.out_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BarkBlock(nn.Module):
def __init__(self, config, is_causal=False):
super().__init__()
if is_causal:
# if causal, uses handmade LayerNorm, so that the layerNorm bias is optional
# this handmade layerNorm is used to stick with Bark choice of leaving optional bias in
# AutoRegressive models (corresponding to the "Text" and the "Coarse" modules)
self.layernorm_1 = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.layernorm_2 = BarkLayerNorm(config.hidden_size, bias=config.bias)
else:
self.layernorm_1 = nn.LayerNorm(config.hidden_size)
self.layernorm_2 = nn.LayerNorm(config.hidden_size)
self.attn = BarkSelfAttention(config, is_causal=is_causal)
self.mlp = BarkMLP(config)
def forward(
self,
hidden_states,
past_key_values=None,
attention_mask=None,
head_mask=None,
use_cache=False,
output_attentions=False,
):
intermediary_hidden_states = self.layernorm_1(hidden_states)
attn_outputs = self.attn(
intermediary_hidden_states,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: output, present_key_values, (attn_weights)
outputs = attn_outputs[1:]
intermediary_hidden_states = hidden_states + attn_output
intermediary_hidden_states = intermediary_hidden_states + self.mlp(
self.layernorm_2(intermediary_hidden_states)
)
if use_cache:
outputs = (intermediary_hidden_states,) + outputs
else:
outputs = (intermediary_hidden_states,) + outputs[1:]
return outputs # hidden_states, ((present), attentions)
class BarkPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = BarkConfig
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear,)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self, "_hf_hook"):
return get_parameter_device(self)
for module in self.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return get_parameter_device(self)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, BarkCausalModel) or isinstance(module, BarkFineModel) or isinstance(module, BarkModel):
module.gradient_checkpointing = value
BARK_MODEL_START_DOCSTRING = """
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`{config}`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BARK_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BarkConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BARK_FINE_INPUTS_DOCSTRING = r"""
Args:
codebook_idx (`int`):
Index of the codebook that will be predicted.
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length, number_of_codebooks)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it. Initially, indices of the first two codebooks are obtained from the `coarse` sub-model. The rest is
predicted recursively by attending the previously predicted channels. The model predicts on windows of
length 1024.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): NOT IMPLEMENTED YET.
input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. If
`past_key_values` is used, optionally only the last `input_embeds` have to be input (see
`past_key_values`). This is useful if you want more control over how to convert `input_ids` indices into
associated vectors than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
BARK_CAUSAL_MODEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
input_embeds (`torch.FloatTensor` of shape `(batch_size, input_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
Here, due to `Bark` particularities, if `past_key_values` is used, `input_embeds` will be ignored and you
have to use `input_ids`. If `past_key_values` is not used and `use_cache` is set to `True`, `input_embeds`
is used in priority instead of `input_ids`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# GPT2-like autoregressive model
class BarkCausalModel(BarkPreTrainedModel):
config_class = BarkSubModelConfig
def __init__(self, config):
super().__init__(config)
self.config = config
# initialize as an autoregressive GPT-like model
self.input_embeds_layer = nn.Embedding(config.input_vocab_size, config.hidden_size)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=True) for _ in range(config.num_layers)])
self.layernorm_final = BarkLayerNorm(config.hidden_size, bias=config.bias)
self.lm_head = nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.input_embeds_layer
def set_input_embeddings(self, new_embeddings):
self.input_embeds_layer = new_embeddings
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
input_embeds = kwargs.get("input_embeds", None)
attention_mask = kwargs.get("attention_mask", None)
position_ids = kwargs.get("position_ids", None)
if past_key_values is not None:
# only last token for inputs_ids if past is defined in kwargs
seq_len = input_ids.shape[1]
input_ids = input_ids[:, [-1]]
# input_embeds have already been used and is not required anymore
input_embeds = None
else:
if input_embeds is not None and kwargs.get("use_cache"):
seq_len = input_embeds.shape[1]
else:
seq_len = input_ids.shape[1]
# ensure that attention_mask and position_ids shapes are aligned with the weird Bark hack of reducing
# sequence length on the first forward pass
if attention_mask is not None:
attention_mask = attention_mask[:, :seq_len]
if position_ids is not None:
position_ids = position_ids[:, :seq_len]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
else:
position_ids = None
if input_embeds is not None and kwargs.get("use_cache"):
return {
"input_ids": None,
"input_embeds": input_embeds,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"position_ids": position_ids,
"attention_mask": attention_mask,
}
@add_start_docstrings_to_model_forward(BARK_CAUSAL_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Verify if input_embeds already exists
# then compute embeddings.
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
elif input_embeds is not None and past_key_values is None:
# we want to return the input_embeds in priority so that it is in line with a weird hack
# of Bark which concatenate two bits of the input_embeds on the first forward pass of the semantic model
pass
elif input_ids is not None:
input_embeds = self.input_embeds_layer(input_ids) # token embeddings of shape (b, t, n_embd)
elif input_embeds is not None:
pass
else:
raise ValueError("You have to specify either input_ids or input_embeds")
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[-1]
device = input_ids.device if input_ids is not None else input_embeds.device
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.layers))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x num_heads x N x N
# head_mask has shape num_layers x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
present_key_values = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, past_layer_key_values) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
)
else:
outputs = block(
hidden_states,
past_key_values=past_layer_key_values,
attention_mask=attention_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
present_key_values = present_key_values + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
raise NotImplementedError(
"Training is not implemented yet for Bark - ensure you do not pass `labels` to the model."
)
if not return_dict:
return tuple(
v for v in [None, logits, present_key_values, all_hidden_states, all_self_attentions] if v is not None
)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
# Necessary for beam_search
return tuple(
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
for layer_past in past_key_values
)
@add_start_docstrings(
"""Bark semantic (or text) model. It shares the same architecture as the coarse model.
It is a GPT-2 like autoregressive model with a language modeling head on top.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkSemanticConfig"),
)
class BarkSemanticModel(BarkCausalModel):
base_model_prefix = "semantic"
config_class = BarkSemanticConfig
def generate(
self,
input_ids: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates text semantic tokens from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids, i.e tokenized input sentences. Will be truncated up to
semantic_generation_config.max_input_semantic_length tokens. Note that the output audios will be as
long as the longest generation among the batch.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
attention_mask (`Optional[torch.Tensor]`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Returns:
torch.LongTensor: Output semantic tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
batch_size = input_ids.shape[0]
max_input_semantic_length = semantic_generation_config.max_input_semantic_length
input_ids = input_ids + semantic_generation_config.text_encoding_offset
if attention_mask is not None:
input_ids = input_ids.masked_fill((1 - attention_mask).bool(), semantic_generation_config.text_pad_token)
if history_prompt is not None:
semantic_history = history_prompt["semantic_prompt"][-max_input_semantic_length:]
semantic_history = nn.functional.pad(
semantic_history,
(0, max_input_semantic_length - len(semantic_history)),
value=semantic_generation_config.semantic_pad_token,
mode="constant",
)
else:
semantic_history = torch.tensor(
[semantic_generation_config.semantic_pad_token] * max_input_semantic_length, dtype=torch.int
).to(self.device)
semantic_history = torch.repeat_interleave(semantic_history[None], batch_size, dim=0)
infer_array = torch.tensor(
[[semantic_generation_config.semantic_infer_token]] * batch_size, dtype=torch.int
).to(self.device)
input_embeds = torch.cat(
[
self.input_embeds_layer(input_ids[:, :max_input_semantic_length])
+ self.input_embeds_layer(semantic_history[:, : max_input_semantic_length + 1]),
self.input_embeds_layer(infer_array),
],
dim=1,
)
tokens_to_suppress = list(
range(semantic_generation_config.semantic_vocab_size, semantic_generation_config.semantic_pad_token)
)
tokens_to_suppress.extend(
list(range(semantic_generation_config.semantic_pad_token + 1, self.config.output_vocab_size))
)
suppress_tokens_logits_processor = SuppressTokensLogitsProcessor(tokens_to_suppress)
# pass input_ids in order to stay consistent with the transformers generate method even though it is not used
# (except to get the input seq_len - that's why we keep the first 257 tokens)
semantic_output = super().generate(
torch.ones((batch_size, max_input_semantic_length + 1), dtype=torch.int).to(self.device),
input_embeds=input_embeds,
logits_processor=[suppress_tokens_logits_processor],
generation_config=semantic_generation_config,
**kwargs,
) # size: 10048
# take the generated semantic tokens
semantic_output = semantic_output[:, max_input_semantic_length + 1 :]
return semantic_output
@add_start_docstrings(
"""Bark coarse acoustics model.
It shares the same architecture as the semantic (or text) model. It is a GPT-2 like autoregressive model with a
language modeling head on top.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkCoarseConfig"),
)
class BarkCoarseModel(BarkCausalModel):
base_model_prefix = "coarse_acoustics"
config_class = BarkCoarseConfig
def preprocess_histories(
self,
max_coarse_history: int,
semantic_to_coarse_ratio: int,
batch_size: int,
semantic_generation_config: int,
codebook_size: int,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
):
"""
Preprocess the optional `Bark` speaker prompts before `self.generate`.
Args:
max_coarse_history (`int`):
Maximum size of coarse tokens used.
semantic_to_coarse_ratio (`int`):
Ratio of semantic to coarse frequency
batch_size (`int`):
Batch size, i.e the number of samples.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
codebook_size (`int`):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`):
Optional `Bark` speaker prompt.
Returns: Returns:
`tuple(torch.FloatTensor)`:
- **x_semantic_history** (`torch.FloatTensor` -- Processed semantic speaker prompt.
- **x_coarse_history** (`torch.FloatTensor`) -- Processed coarse speaker prompt.
"""
if history_prompt is not None:
x_semantic_history = torch.repeat_interleave(history_prompt["semantic_prompt"][None], batch_size, dim=0)
# clone to avoid modifying history_prompt.coarse_prompt
x_coarse_history = history_prompt["coarse_prompt"].clone()
# offset x_coarse_history
if codebook_size is not None:
for n in range(1, x_coarse_history.shape[0]):
# offset
x_coarse_history[n, :] += codebook_size * n
# flatten x_coarse_history
x_coarse_history = torch.transpose(x_coarse_history, 0, 1).view(-1)
x_coarse_history = x_coarse_history + semantic_generation_config.semantic_vocab_size
x_coarse_history = torch.repeat_interleave(x_coarse_history[None], batch_size, dim=0)
# e.g: after SEMANTIC_VOCAB_SIZE (10000), 1024 tokens dedicated to first codebook, 1024 next tokens
# dedicated to second codebook.
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
# trim histories correctly
n_semantic_hist_provided = min(
[
max_semantic_history,
x_semantic_history.shape[1] - x_semantic_history.shape[1] % 2,
int(np.floor(x_coarse_history.shape[1] / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[:, -n_semantic_hist_provided:].int()
x_coarse_history = x_coarse_history[:, -n_coarse_hist_provided:].int()
# bit of a hack for time alignment (sounds better) - from Bark original implementation
x_coarse_history = x_coarse_history[:, :-2]
else:
# shape: (batch_size, 0)
x_semantic_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)
x_coarse_history = torch.tensor([[]] * batch_size, dtype=torch.int).to(self.device)
return x_semantic_history, x_coarse_history
def generate(
self,
semantic_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates coarse acoustics tokens from input text semantic tokens and an additional optional `Bark` speaker
prompt.
Args:
semantic_output (`torch.Tensor` of shape (batch_size, seq_len), *optional*):
Input text semantic ids, i.e the output of `BarkSemanticModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
Returns:
torch.LongTensor: Output coarse acoustics tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
max_coarse_input_length = coarse_generation_config.max_coarse_input_length
max_coarse_history = coarse_generation_config.max_coarse_history
sliding_window_len = coarse_generation_config.sliding_window_len
# replace semantic_pad_token (eos_tok and pad_tok here) with coarse_semantic_pad_token i.e the pad_token
# used in the next model
semantic_output.masked_fill_(
semantic_output == semantic_generation_config.semantic_pad_token,
coarse_generation_config.coarse_semantic_pad_token,
)
semantic_to_coarse_ratio = (
coarse_generation_config.coarse_rate_hz
/ semantic_generation_config.semantic_rate_hz
* coarse_generation_config.n_coarse_codebooks
)
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
# beware, depends on the seq_len of the longest sequence of the batch.
# Also, the seq_len might be one token too long because of an added
# pad_token as compared to Bark original implementation.
max_generated_len = np.floor(
semantic_output.shape[1] * semantic_to_coarse_ratio / coarse_generation_config.n_coarse_codebooks
)
max_generated_len = int(round(max_generated_len * coarse_generation_config.n_coarse_codebooks))
batch_size = semantic_output.shape[0]
x_semantic_history, x_coarse = self.preprocess_histories(
history_prompt=history_prompt,
max_coarse_history=max_coarse_history,
semantic_to_coarse_ratio=semantic_to_coarse_ratio,
batch_size=batch_size,
semantic_generation_config=semantic_generation_config,
codebook_size=codebook_size,
)
base_semantic_idx = x_semantic_history.shape[1]
semantic_output = torch.hstack([x_semantic_history, semantic_output])
n_window_steps = int(np.ceil(max_generated_len / sliding_window_len))
total_generated_len = 0
len_coarse_history = x_coarse.shape[1]
for _ in range(n_window_steps):
semantic_idx = base_semantic_idx + int(round(total_generated_len / semantic_to_coarse_ratio))
# pad from right side
input_coarse = semantic_output[:, np.max([0, semantic_idx - max_semantic_history]) :]
input_coarse = input_coarse[:, :max_coarse_input_length]
input_coarse = F.pad(
input_coarse,
(0, max_coarse_input_length - input_coarse.shape[-1]),
"constant",
coarse_generation_config.coarse_semantic_pad_token,
)
input_coarse = torch.hstack(
[
input_coarse,
torch.tensor([[coarse_generation_config.coarse_infer_token]] * batch_size).to(self.device),
x_coarse[:, -max_coarse_history:],
]
)
alternatingLogitsProcessor = AlternatingCodebooksLogitsProcessor(
input_coarse.shape[1],
semantic_generation_config.semantic_vocab_size,
codebook_size,
)
output_coarse = super().generate(
input_coarse,
logits_processor=[alternatingLogitsProcessor],
max_new_tokens=min(sliding_window_len, max_generated_len - total_generated_len),
generation_config=coarse_generation_config,
**kwargs,
)
input_coarse_len = input_coarse.shape[1]
x_coarse = torch.hstack([x_coarse, output_coarse[:, input_coarse_len:]])
total_generated_len = x_coarse.shape[1] - len_coarse_history
del output_coarse
coarse_output = x_coarse[:, len_coarse_history:]
return coarse_output
@add_start_docstrings(
"""Bark fine acoustics model. It is a non-causal GPT-like model with `config.n_codes_total` embedding layers and
language modeling heads, one for each codebook.""",
BARK_MODEL_START_DOCSTRING.format(config="BarkFineConfig"),
)
class BarkFineModel(BarkPreTrainedModel):
base_model_prefix = "fine_acoustics"
config_class = BarkFineConfig
main_input_name = "codebook_idx"
def __init__(self, config):
# non-causal gpt-like model with one embedding layer and one lm_head for each codebook of Encodec
super().__init__(config)
self.config = config
# initialize a modified non causal GPT-like model
# note that for there is one embedding layer and one lm_head for each codebook of Encodec
self.input_embeds_layers = nn.ModuleList(
[nn.Embedding(config.input_vocab_size, config.hidden_size) for _ in range(config.n_codes_total)]
)
self.position_embeds_layer = nn.Embedding(config.block_size, config.hidden_size)
self.drop = nn.Dropout(config.dropout)
self.layers = nn.ModuleList([BarkBlock(config, is_causal=False) for _ in range(config.num_layers)])
self.layernorm_final = nn.LayerNorm(config.hidden_size)
self.lm_heads = nn.ModuleList(
[
nn.Linear(config.hidden_size, config.output_vocab_size, bias=False)
for _ in range(config.n_codes_given, config.n_codes_total)
]
)
self.gradient_checkpointing = False
self.n_codes_total = config.n_codes_total
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
# one embedding layers for each codebook
return self.input_embeds_layers
def set_input_embeddings(self, new_embeddings):
# one embedding layers for each codebook
self.input_embeds_layers = new_embeddings
def get_output_embeddings(self):
# one lm_head for each codebook
return self.lm_heads
def set_output_embeddings(self, new_output_embeddings):
# one lm_head for each codebook
self.lm_heads = new_output_embeddings
def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
old_embeddings_list = self.get_input_embeddings()
new_embeddings_list = nn.ModuleList(
[
self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
for old_embeddings in old_embeddings_list
]
)
self.set_input_embeddings(new_embeddings_list)
new_num_tokens = new_embeddings_list[0].weight.shape[0]
# if word embeddings are not tied, make sure that lm head is resized as well
if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
old_lm_head_list = self.get_output_embeddings()
new_lm_head_list = nn.ModuleList(
[self._get_resized_lm_head(old_lm_head, new_num_tokens) for old_lm_head in old_lm_head_list]
)
self.set_output_embeddings(new_lm_head_list)
return self.get_input_embeddings()
def resize_token_embeddings(
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
) -> nn.Embedding:
"""
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
Arguments:
new_num_tokens (`int`, *optional*):
The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
pad_to_multiple_of (`int`, *optional*):
If set will pad the embedding matrix to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
details about this, or help on choosing the correct value for resizing, refer to this guide:
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
Return:
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
"""
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
if new_num_tokens is None and pad_to_multiple_of is None:
return model_embeds
# Update base model and current model config
self.config.output_vocab_size = model_embeds[0].weight.shape[0]
self.config.vocab_size = model_embeds[0].weight.shape[0]
self.output_vocab_size = model_embeds[0].weight.shape[0]
self.vocab_size = model_embeds[0].weight.shape[0]
# Tie weights again if needed
self.tie_weights()
return model_embeds
def tie_weights(self):
"""
Tie the weights between the input embeddings list and the output embeddings list.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
if getattr(self.config, "tie_word_embeddings", True):
self._tied_weights_keys = []
output_embeddings = self.get_output_embeddings()
input_embeddings = self.get_input_embeddings()
for i in range(self.config.n_codes_total - self.config.n_codes_given):
# self.input_embeds_layers[i + 1].weight = self.lm_heads[i].weight
self._tie_or_clone_weights(output_embeddings[i], input_embeddings[i + 1])
self._tied_weights_keys.append(f"lm_heads.{i}.weight")
for module in self.modules():
if hasattr(module, "_tie_weights"):
module._tie_weights()
@add_start_docstrings_to_model_forward(BARK_FINE_INPUTS_DOCSTRING)
def forward(
self,
codebook_idx: int, # an additionnal idx corresponding to the id of the codebook that will be predicted
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
input_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if codebook_idx == 0:
raise ValueError("Cannot predict 0th codebook - 0th codebook should be predicted by the coarse model")
if input_ids is not None and input_embeds is not None:
raise ValueError("You cannot specify both input_ids and input_embeds at the same time")
if input_ids is None and input_embeds is None:
raise ValueError("You have to specify either input_ids or input_embeds")
if input_ids is not None:
# the input_embeddings are the sum of the j previous codebooks embeddings before
# the current codebook_idx codebook
# forward the GPT model itself
input_embeds = [
input_embeds_layer(input_ids[:, :, i]).unsqueeze(-1)
for i, input_embeds_layer in enumerate(self.input_embeds_layers)
] # token embeddings of shape (b, t, n_embd)
input_embeds = torch.cat(input_embeds, dim=-1)
input_embeds = input_embeds[:, :, :, : codebook_idx + 1].sum(dim=-1)
input_shape = input_embeds.size()[:-1]
batch_size = input_embeds.shape[0]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else input_embeds.device
if position_ids is None:
position_ids = torch.arange(0, seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0) # shape (1, seq_length)
position_embeds = self.position_embeds_layer(position_ids) # position embeddings of shape (1, t, n_embd)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
attention_mask = attention_mask[:, None, None, :]
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
hidden_states = self.drop(input_embeds + position_embeds)
output_shape = input_shape + (hidden_states.size(-1),)
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = block(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask[i],
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[1],)
hidden_states = self.layernorm_final(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
logits = self.lm_heads[codebook_idx - self.config.n_codes_given](hidden_states)
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
if not return_dict:
return tuple(v for v in [None, logits, all_hidden_states, all_self_attentions] if v is not None)
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def generate(
self,
coarse_output: torch.Tensor,
semantic_generation_config: BarkSemanticGenerationConfig = None,
coarse_generation_config: BarkCoarseGenerationConfig = None,
fine_generation_config: BarkFineGenerationConfig = None,
codebook_size: int = 1024,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates fine acoustics tokens from input coarse acoustics tokens and an additional optional `Bark` speaker
prompt.
Args:
coarse_output (`torch.Tensor` of shape (batch_size, seq_len)):
Input coarse acoustics ids, i.e the output of `BarkCoarseModel.generate`.
semantic_generation_config (`BarkSemanticGenerationConfig`):
Generation config indicating how to generate the semantic tokens.
coarse_generation_config (`BarkCoarseGenerationConfig`):
Generation config indicating how to generate the coarse tokens.
fine_generation_config (`BarkFineGenerationConfig`):
Generation config indicating how to generate the fine tokens.
codebook_size (`int`, *optional*, defaults to 1024):
Codebook channel size, i.e. the size of the output vocabulary per codebook channel.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt.
Returns:
torch.LongTensor: Output fine acoustics tokens.
"""
if semantic_generation_config is None:
raise ValueError("`semantic_generation_config` has to be provided")
if coarse_generation_config is None:
raise ValueError("`coarse_generation_config` has to be provided")
if fine_generation_config is None:
raise ValueError("`fine_generation_config` has to be provided")
# since we don't really use GenerationConfig through the fine model (autoencoder)
# and since only temperature is used from the classic GenerationConfig parameters
# manually impose the kwargs priority over the generation config
temperature = kwargs.get("temperature", fine_generation_config.temperature)
max_fine_history_length = fine_generation_config.max_fine_history_length
max_fine_input_length = fine_generation_config.max_fine_input_length
# shape: (batch, n_coarse_codebooks * seq_len)
# new_shape: (batch, seq_len, n_coarse_codebooks)
coarse_output = coarse_output.view(coarse_output.shape[0], -1, coarse_generation_config.n_coarse_codebooks)
# brings ids into the range [0, codebook_size -1]
coarse_output = torch.remainder(coarse_output - semantic_generation_config.semantic_vocab_size, codebook_size)
batch_size = coarse_output.shape[0]
if history_prompt is not None:
x_fine_history = torch.repeat_interleave(history_prompt["fine_prompt"].T[None], batch_size, dim=0)
# transpose to get to shape (seq_len, n_fine_codebooks)
else:
x_fine_history = None
n_coarse = coarse_generation_config.n_coarse_codebooks
# pad the last 6th codebooks
fine_input = F.pad(
coarse_output,
(0, fine_generation_config.n_fine_codebooks - n_coarse),
"constant",
codebook_size,
)
# prepend history if available (max max_fine_history_length)
if x_fine_history is not None:
fine_input = torch.cat([x_fine_history[:, -max_fine_history_length:, :], fine_input], dim=1)
# len of the fine_history that has been added to fine_input
n_history = x_fine_history[:, -max_fine_history_length:, :].shape[1]
else:
n_history = 0
n_remove_from_end = 0
# need to pad if too short (since non-causal model)
if fine_input.shape[1] < max_fine_input_length:
n_remove_from_end = max_fine_input_length - fine_input.shape[1]
fine_input = F.pad(fine_input, (0, 0, 0, n_remove_from_end), mode="constant", value=codebook_size)
# we can be lazy about fractional loop and just keep overwriting codebooks.
# seems that coarse_output.shape[1] - (max_fine_input_length - n_history) is equal to minus n_remove_from_end
# So if we needed to pad because too short, n_loops is always 1 (because n_remove_from_end > 0)
# If not, we loop over at least twice.
n_loops = (coarse_output.shape[1] - (max_fine_input_length - n_history)) / max_fine_history_length
n_loops = int(np.ceil(n_loops))
n_loops = max(0, n_loops) + 1
for n_outer in range(n_loops):
start_idx = min([n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_input_length])
start_fill_idx = min(
[n_history + n_outer * max_fine_history_length, fine_input.shape[1] - max_fine_history_length]
)
rel_start_fill_idx = start_fill_idx - start_idx
input_buffer = fine_input[:, start_idx : start_idx + max_fine_input_length, :]
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
logits = self.forward(n_inner, input_buffer).logits
if temperature is None or temperature == 1.0:
relevant_logits = logits[:, rel_start_fill_idx:, :codebook_size]
codebook_preds = torch.argmax(relevant_logits, -1)
else:
relevant_logits = logits[:, :, :codebook_size] / temperature
# apply softmax
probs = F.softmax(relevant_logits, dim=-1)[:, rel_start_fill_idx:max_fine_input_length]
# reshape to 2D: (batch_size, seq_len, codebook_size) -> (batch_size*seq_len, codebook_size)
probs = probs.reshape((-1, codebook_size))
# multinomial then reshape : (batch_size*seq_len)-> (batch_size,seq_len)
codebook_preds = torch.multinomial(probs, num_samples=1).view(batch_size, -1)
codebook_preds = codebook_preds.to(torch.int32)
input_buffer[:, rel_start_fill_idx:, n_inner] = codebook_preds
del logits, codebook_preds
# transfer into fine_input
for n_inner in range(n_coarse, fine_generation_config.n_fine_codebooks):
fine_input[
:, start_fill_idx : start_fill_idx + (max_fine_input_length - rel_start_fill_idx), n_inner
] = input_buffer[:, rel_start_fill_idx:, n_inner]
del input_buffer
fine_input = fine_input.transpose(1, 2)[:, :, n_history:]
if n_remove_from_end > 0:
fine_input = fine_input[:, :, :-n_remove_from_end]
if fine_input.shape[-1] != coarse_output.shape[-2]:
raise ValueError("input and output should have the same seq_len")
return fine_input
@add_start_docstrings(
"""
The full Bark model, a text-to-speech model composed of 4 sub-models:
- [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that
takes
as input tokenized text, and predicts semantic text tokens that capture the meaning of the text.
- [`BarkCoarseModel`] (also refered to as the 'coarse acoustics' model), also a causal autoregressive transformer,
that takes into input the results of the last model. It aims at regressing the first two audio codebooks necessary
to `encodec`.
- [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively
predicts the last codebooks based on the sum of the previous codebooks embeddings.
- having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio
array.
It should be noted that each of the first three modules can support conditional speaker embeddings to condition the
output sound according to specific predefined voice.
""",
BARK_START_DOCSTRING,
)
class BarkModel(BarkPreTrainedModel):
config_class = BarkConfig
def __init__(self, config):
super().__init__(config)
self.semantic = BarkSemanticModel(config.semantic_config)
self.coarse_acoustics = BarkCoarseModel(config.coarse_acoustics_config)
self.fine_acoustics = BarkFineModel(config.fine_acoustics_config)
self.codec_model = AutoModel.from_config(config.codec_config)
self.config = config
@property
def device(self) -> torch.device:
"""
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
device).
"""
# for bark_model, device must be verified on its sub-models
# if has _hf_hook, has been offloaded so the device has to be found in the hook
if not hasattr(self.semantic, "_hf_hook"):
return get_parameter_device(self)
for module in self.semantic.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
def enable_cpu_offload(self, gpu_id: Optional[int] = 0):
r"""
Offloads all sub-models to CPU using accelerate, reducing memory usage with a low impact on performance. This
method moves one whole sub-model at a time to the GPU when it is used, and the sub-model remains in GPU until
the next sub-model runs.
Args:
gpu_id (`int`, *optional*, defaults to 0):
GPU id on which the sub-models will be loaded and offloaded.
"""
if is_accelerate_available():
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate`.")
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu")
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
# this layer is used outside the first foward pass of semantic so need to be loaded before semantic
self.semantic.input_embeds_layer, _ = cpu_offload_with_hook(self.semantic.input_embeds_layer, device)
hook = None
for cpu_offloaded_model in [
self.semantic,
self.coarse_acoustics,
self.fine_acoustics,
]:
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
self.fine_acoustics_hook = hook
_, hook = cpu_offload_with_hook(self.codec_model, device, prev_module_hook=hook)
# We'll offload the last model manually.
self.codec_model_hook = hook
def codec_decode(self, fine_output):
"""Turn quantized audio codes into audio array using encodec."""
fine_output = fine_output.transpose(0, 1)
emb = self.codec_model.quantizer.decode(fine_output)
out = self.codec_model.decoder(emb)
audio_arr = out.squeeze(1) # squeeze the codebook dimension
return audio_arr
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
history_prompt: Optional[Dict[str, torch.Tensor]] = None,
**kwargs,
) -> torch.LongTensor:
"""
Generates audio from an input prompt and an additional optional `Bark` speaker prompt.
Args:
input_ids (`Optional[torch.Tensor]` of shape (batch_size, seq_len), *optional*):
Input ids. Will be truncated up to 256 tokens. Note that the output audios will be as long as the
longest generation among the batch.
history_prompt (`Optional[Dict[str,torch.Tensor]]`, *optional*):
Optional `Bark` speaker prompt. Note that for now, this model takes only one speaker prompt per batch.
kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model.
- With a *semantic_*, *coarse_*, *fine_* prefix, they will be input for the `generate` method of the
semantic, coarse and fine respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for all sub-models except one.
Returns:
torch.LongTensor: Output generated audio.
Example:
```python
>>> from transformers import AutoProcessor, BarkModel
>>> processor = AutoProcessor.from_pretrained("suno/bark-small")
>>> model = BarkModel.from_pretrained("suno/bark-small")
>>> # To add a voice preset, you can pass `voice_preset` to `BarkProcessor.__call__(...)`
>>> voice_preset = "v2/en_speaker_6"
>>> inputs = processor("Hello, my dog is cute, I need him in my life", voice_preset=voice_preset)
>>> audio_array = model.generate(**inputs, semantic_max_new_tokens=100)
>>> audio_array = audio_array.cpu().numpy().squeeze()
```
"""
# TODO (joao):workaround until nested generation config is compatible with PreTrained Model
# todo: dict
semantic_generation_config = BarkSemanticGenerationConfig(**self.generation_config.semantic_config)
coarse_generation_config = BarkCoarseGenerationConfig(**self.generation_config.coarse_acoustics_config)
fine_generation_config = BarkFineGenerationConfig(**self.generation_config.fine_acoustics_config)
kwargs_semantic = {
# if "attention_mask" is set, it should not be passed to CoarseModel and FineModel
"attention_mask": kwargs.pop("attention_mask", None)
}
kwargs_coarse = {}
kwargs_fine = {}
for key, value in kwargs.items():
if key.startswith("semantic_"):
key = key[len("semantic_") :]
kwargs_semantic[key] = value
elif key.startswith("coarse_"):
key = key[len("coarse_") :]
kwargs_coarse[key] = value
elif key.startswith("fine_"):
key = key[len("fine_") :]
kwargs_fine[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_semantic:
kwargs_semantic[key] = value
if key not in kwargs_coarse:
kwargs_coarse[key] = value
if key not in kwargs_fine:
kwargs_fine[key] = value
# 1. Generate from the semantic model
semantic_output = self.semantic.generate(
input_ids,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
**kwargs_semantic,
)
# 2. Generate from the coarse model
coarse_output = self.coarse_acoustics.generate(
semantic_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
codebook_size=self.generation_config.codebook_size,
**kwargs_coarse,
)
# 3. "generate" from the fine model
output = self.fine_acoustics.generate(
coarse_output,
history_prompt=history_prompt,
semantic_generation_config=semantic_generation_config,
coarse_generation_config=coarse_generation_config,
fine_generation_config=fine_generation_config,
codebook_size=self.generation_config.codebook_size,
**kwargs_fine,
)
if getattr(self, "fine_acoustics_hook", None) is not None:
# Manually offload fine_acoustics to CPU
# and load codec_model to GPU
# since bark doesn't use codec_model forward pass
self.fine_acoustics_hook.offload()
self.codec_model = self.codec_model.to(self.device)
# 4. Decode the output and generate audio array
audio = self.codec_decode(output)
if getattr(self, "codec_model_hook", None) is not None:
# Offload codec_model to CPU
self.codec_model_hook.offload()
return audio
|