File size: 5,056 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# coding=utf-8
# Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for BridgeTower.
"""

from typing import List, Optional, Union

from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType


class BridgeTowerProcessor(ProcessorMixin):
    r"""
    Constructs a BridgeTower processor which wraps a Roberta tokenizer and BridgeTower image processor into a single
    processor.

    [`BridgeTowerProcessor`] offers all the functionalities of [`BridgeTowerImageProcessor`] and
    [`RobertaTokenizerFast`]. See the docstring of [`~BridgeTowerProcessor.__call__`] and
    [`~BridgeTowerProcessor.decode`] for more information.

    Args:
        image_processor (`BridgeTowerImageProcessor`):
            An instance of [`BridgeTowerImageProcessor`]. The image processor is a required input.
        tokenizer (`RobertaTokenizerFast`):
            An instance of ['RobertaTokenizerFast`]. The tokenizer is a required input.
    """
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "BridgeTowerImageProcessor"
    tokenizer_class = ("RobertaTokenizer", "RobertaTokenizerFast")

    def __init__(self, image_processor, tokenizer):
        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        images,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
        add_special_tokens: bool = True,
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Union[bool, str, TruncationStrategy] = None,
        max_length: Optional[int] = None,
        stride: int = 0,
        pad_to_multiple_of: Optional[int] = None,
        return_token_type_ids: Optional[bool] = None,
        return_attention_mask: Optional[bool] = None,
        return_overflowing_tokens: bool = False,
        return_special_tokens_mask: bool = False,
        return_offsets_mapping: bool = False,
        return_length: bool = False,
        verbose: bool = True,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> BatchEncoding:
        """
        This method uses [`BridgeTowerImageProcessor.__call__`] method to prepare image(s) for the model, and
        [`RobertaTokenizerFast.__call__`] to prepare text for the model.

        Please refer to the docstring of the above two methods for more information.
        """
        encoding = self.tokenizer(
            text=text,
            add_special_tokens=add_special_tokens,
            padding=padding,
            truncation=truncation,
            max_length=max_length,
            stride=stride,
            pad_to_multiple_of=pad_to_multiple_of,
            return_token_type_ids=return_token_type_ids,
            return_attention_mask=return_attention_mask,
            return_overflowing_tokens=return_overflowing_tokens,
            return_special_tokens_mask=return_special_tokens_mask,
            return_offsets_mapping=return_offsets_mapping,
            return_length=return_length,
            verbose=verbose,
            return_tensors=return_tensors,
            **kwargs,
        )
        # add pixel_values + pixel_mask
        encoding_image_processor = self.image_processor(
            images, return_tensors=return_tensors, do_normalize=True, do_center_crop=True, **kwargs
        )
        encoding.update(encoding_image_processor)

        return encoding

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to RobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer
        to the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))