Spaces:
Runtime error
Runtime error
File size: 6,860 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CvT model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json",
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class CvtConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the CvT
[microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`):
The kernel size of each encoder's patch embedding.
patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`):
The stride size of each encoder's patch embedding.
patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`):
The padding size of each encoder's patch embedding.
embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`):
Dimension of each of the encoder blocks.
num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`):
Number of attention heads for each attention layer in each block of the Transformer encoder.
depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`):
The number of layers in each encoder block.
mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`):
Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
encoder blocks.
attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
The dropout ratio for the attention probabilities.
drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`):
The dropout ratio for the patch embeddings probabilities.
drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`):
The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`):
The bias bool for query, key and value in attentions
cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`):
Whether or not to add a classification token to the output of each of the last 3 stages.
qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`):
The projection method for query, key and value Default is depth-wise convolutions with batch norm. For
Linear projection use "avg".
kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`):
The kernel size for query, key and value in attention layer
padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The padding size for key and value in attention layer
stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`):
The stride size for key and value in attention layer
padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The padding size for query in attention layer
stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`):
The stride size for query in attention layer
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import CvtConfig, CvtModel
>>> # Initializing a Cvt msft/cvt style configuration
>>> configuration = CvtConfig()
>>> # Initializing a model (with random weights) from the msft/cvt style configuration
>>> model = CvtModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "cvt"
def __init__(
self,
num_channels=3,
patch_sizes=[7, 3, 3],
patch_stride=[4, 2, 2],
patch_padding=[2, 1, 1],
embed_dim=[64, 192, 384],
num_heads=[1, 3, 6],
depth=[1, 2, 10],
mlp_ratio=[4.0, 4.0, 4.0],
attention_drop_rate=[0.0, 0.0, 0.0],
drop_rate=[0.0, 0.0, 0.0],
drop_path_rate=[0.0, 0.0, 0.1],
qkv_bias=[True, True, True],
cls_token=[False, False, True],
qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"],
kernel_qkv=[3, 3, 3],
padding_kv=[1, 1, 1],
stride_kv=[2, 2, 2],
padding_q=[1, 1, 1],
stride_q=[1, 1, 1],
initializer_range=0.02,
layer_norm_eps=1e-12,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.patch_sizes = patch_sizes
self.patch_stride = patch_stride
self.patch_padding = patch_padding
self.embed_dim = embed_dim
self.num_heads = num_heads
self.depth = depth
self.mlp_ratio = mlp_ratio
self.attention_drop_rate = attention_drop_rate
self.drop_rate = drop_rate
self.drop_path_rate = drop_path_rate
self.qkv_bias = qkv_bias
self.cls_token = cls_token
self.qkv_projection_method = qkv_projection_method
self.kernel_qkv = kernel_qkv
self.padding_kv = padding_kv
self.stride_kv = stride_kv
self.padding_q = padding_q
self.stride_q = stride_q
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
|