Spaces:
Runtime error
Runtime error
File size: 28,943 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 |
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CvT model."""
import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_cvt import CvtConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "CvtConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/cvt-13",
"microsoft/cvt-13-384",
"microsoft/cvt-13-384-22k",
"microsoft/cvt-21",
"microsoft/cvt-21-384",
"microsoft/cvt-21-384-22k",
# See all Cvt models at https://huggingface.co/models?filter=cvt
]
@dataclass
class BaseModelOutputWithCLSToken(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
Classification token at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
cls_token_value: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CvtDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class CvtEmbeddings(nn.Module):
"""
Construct the CvT embeddings.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
super().__init__()
self.convolution_embeddings = CvtConvEmbeddings(
patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, pixel_values):
hidden_state = self.convolution_embeddings(pixel_values)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtConvEmbeddings(nn.Module):
"""
Image to Conv Embedding.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
self.patch_size = patch_size
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
self.normalization = nn.LayerNorm(embed_dim)
def forward(self, pixel_values):
pixel_values = self.projection(pixel_values)
batch_size, num_channels, height, width = pixel_values.shape
hidden_size = height * width
# rearrange "b c h w -> b (h w) c"
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
if self.normalization:
pixel_values = self.normalization(pixel_values)
# rearrange "b (h w) c" -> b c h w"
pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return pixel_values
class CvtSelfAttentionConvProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride):
super().__init__()
self.convolution = nn.Conv2d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=padding,
stride=stride,
bias=False,
groups=embed_dim,
)
self.normalization = nn.BatchNorm2d(embed_dim)
def forward(self, hidden_state):
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state)
return hidden_state
class CvtSelfAttentionLinearProjection(nn.Module):
def forward(self, hidden_state):
batch_size, num_channels, height, width = hidden_state.shape
hidden_size = height * width
# rearrange " b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
return hidden_state
class CvtSelfAttentionProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
super().__init__()
if projection_method == "dw_bn":
self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
self.linear_projection = CvtSelfAttentionLinearProjection()
def forward(self, hidden_state):
hidden_state = self.convolution_projection(hidden_state)
hidden_state = self.linear_projection(hidden_state)
return hidden_state
class CvtSelfAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token=True,
**kwargs,
):
super().__init__()
self.scale = embed_dim**-0.5
self.with_cls_token = with_cls_token
self.embed_dim = embed_dim
self.num_heads = num_heads
self.convolution_projection_query = CvtSelfAttentionProjection(
embed_dim,
kernel_size,
padding_q,
stride_q,
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
)
self.convolution_projection_key = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.convolution_projection_value = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.dropout = nn.Dropout(attention_drop_rate)
def rearrange_for_multi_head_attention(self, hidden_state):
batch_size, hidden_size, _ = hidden_state.shape
head_dim = self.embed_dim // self.num_heads
# rearrange 'b t (h d) -> b h t d'
return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
def forward(self, hidden_state, height, width):
if self.with_cls_token:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
batch_size, hidden_size, num_channels = hidden_state.shape
# rearrange "b (h w) c -> b c h w"
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
key = self.convolution_projection_key(hidden_state)
query = self.convolution_projection_query(hidden_state)
value = self.convolution_projection_value(hidden_state)
if self.with_cls_token:
query = torch.cat((cls_token, query), dim=1)
key = torch.cat((cls_token, key), dim=1)
value = torch.cat((cls_token, value), dim=1)
head_dim = self.embed_dim // self.num_heads
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
attention_probs = self.dropout(attention_probs)
context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
# rearrange"b h t d -> b t (h d)"
_, _, hidden_size, _ = context.shape
context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
return context
class CvtSelfOutput(nn.Module):
"""
The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, embed_dim, drop_rate):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtSelfAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token,
)
self.output = CvtSelfOutput(embed_dim, drop_rate)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_state, height, width):
self_output = self.attention(hidden_state, height, width)
attention_output = self.output(self_output, hidden_state)
return attention_output
class CvtIntermediate(nn.Module):
def __init__(self, embed_dim, mlp_ratio):
super().__init__()
self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
self.activation = nn.GELU()
def forward(self, hidden_state):
hidden_state = self.dense(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class CvtOutput(nn.Module):
def __init__(self, embed_dim, mlp_ratio, drop_rate):
super().__init__()
self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
hidden_state = hidden_state + input_tensor
return hidden_state
class CvtLayer(nn.Module):
"""
CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
"""
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
mlp_ratio,
drop_path_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token,
)
self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_before = nn.LayerNorm(embed_dim)
self.layernorm_after = nn.LayerNorm(embed_dim)
def forward(self, hidden_state, height, width):
self_attention_output = self.attention(
self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
height,
width,
)
attention_output = self_attention_output
attention_output = self.drop_path(attention_output)
# first residual connection
hidden_state = attention_output + hidden_state
# in Cvt, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_state)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_state)
layer_output = self.drop_path(layer_output)
return layer_output
class CvtStage(nn.Module):
def __init__(self, config, stage):
super().__init__()
self.config = config
self.stage = stage
if self.config.cls_token[self.stage]:
self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
self.embedding = CvtEmbeddings(
patch_size=config.patch_sizes[self.stage],
stride=config.patch_stride[self.stage],
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
embed_dim=config.embed_dim[self.stage],
padding=config.patch_padding[self.stage],
dropout_rate=config.drop_rate[self.stage],
)
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
self.layers = nn.Sequential(
*[
CvtLayer(
num_heads=config.num_heads[self.stage],
embed_dim=config.embed_dim[self.stage],
kernel_size=config.kernel_qkv[self.stage],
padding_q=config.padding_q[self.stage],
padding_kv=config.padding_kv[self.stage],
stride_kv=config.stride_kv[self.stage],
stride_q=config.stride_q[self.stage],
qkv_projection_method=config.qkv_projection_method[self.stage],
qkv_bias=config.qkv_bias[self.stage],
attention_drop_rate=config.attention_drop_rate[self.stage],
drop_rate=config.drop_rate[self.stage],
drop_path_rate=drop_path_rates[self.stage],
mlp_ratio=config.mlp_ratio[self.stage],
with_cls_token=config.cls_token[self.stage],
)
for _ in range(config.depth[self.stage])
]
)
def forward(self, hidden_state):
cls_token = None
hidden_state = self.embedding(hidden_state)
batch_size, num_channels, height, width = hidden_state.shape
# rearrange b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
if self.config.cls_token[self.stage]:
cls_token = self.cls_token.expand(batch_size, -1, -1)
hidden_state = torch.cat((cls_token, hidden_state), dim=1)
for layer in self.layers:
layer_outputs = layer(hidden_state, height, width)
hidden_state = layer_outputs
if self.config.cls_token[self.stage]:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return hidden_state, cls_token
class CvtEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.stages = nn.ModuleList([])
for stage_idx in range(len(config.depth)):
self.stages.append(CvtStage(config, stage_idx))
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_state = pixel_values
cls_token = None
for _, (stage_module) in enumerate(self.stages):
hidden_state, cls_token = stage_module(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
return BaseModelOutputWithCLSToken(
last_hidden_state=hidden_state,
cls_token_value=cls_token,
hidden_states=all_hidden_states,
)
class CvtPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CvtConfig
base_model_prefix = "cvt"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, CvtStage):
if self.config.cls_token[module.stage]:
module.cls_token.data = nn.init.trunc_normal_(
torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
)
CVT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CVT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
CVT_START_DOCSTRING,
)
class CvtModel(CvtPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.encoder = CvtEncoder(config)
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCLSToken,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCLSToken]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCLSToken(
last_hidden_state=sequence_output,
cls_token_value=encoder_outputs.cls_token_value,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
CVT_START_DOCSTRING,
)
class CvtForImageClassification(CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.cvt = CvtModel(config, add_pooling_layer=False)
self.layernorm = nn.LayerNorm(config.embed_dim[-1])
# Classifier head
self.classifier = (
nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
cls_token = outputs[1]
if self.config.cls_token[-1]:
sequence_output = self.layernorm(cls_token)
else:
batch_size, num_channels, height, width = sequence_output.shape
# rearrange "b c h w -> b (h w) c"
sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
sequence_output = self.layernorm(sequence_output)
sequence_output_mean = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output_mean)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
|