Spaces:
Runtime error
Runtime error
File size: 19,910 Bytes
1ce5e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import collections
import types
import numpy as np
from ..utils import (
add_end_docstrings,
is_tensorflow_probability_available,
is_tf_available,
is_torch_available,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, Dataset, Pipeline, PipelineException
if is_torch_available():
import torch
from ..models.auto.modeling_auto import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
)
if is_tf_available() and is_tensorflow_probability_available():
import tensorflow as tf
import tensorflow_probability as tfp
from ..models.auto.modeling_tf_auto import (
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES,
)
class TableQuestionAnsweringArgumentHandler(ArgumentHandler):
"""
Handles arguments for the TableQuestionAnsweringPipeline
"""
def __call__(self, table=None, query=None, **kwargs):
# Returns tqa_pipeline_inputs of shape:
# [
# {"table": pd.DataFrame, "query": List[str]},
# ...,
# {"table": pd.DataFrame, "query" : List[str]}
# ]
requires_backends(self, "pandas")
import pandas as pd
if table is None:
raise ValueError("Keyword argument `table` cannot be None.")
elif query is None:
if isinstance(table, dict) and table.get("query") is not None and table.get("table") is not None:
tqa_pipeline_inputs = [table]
elif isinstance(table, list) and len(table) > 0:
if not all(isinstance(d, dict) for d in table):
raise ValueError(
f"Keyword argument `table` should be a list of dict, but is {(type(d) for d in table)}"
)
if table[0].get("query") is not None and table[0].get("table") is not None:
tqa_pipeline_inputs = table
else:
raise ValueError(
"If keyword argument `table` is a list of dictionaries, each dictionary should have a `table`"
f" and `query` key, but only dictionary has keys {table[0].keys()} `table` and `query` keys."
)
elif Dataset is not None and isinstance(table, Dataset) or isinstance(table, types.GeneratorType):
return table
else:
raise ValueError(
"Invalid input. Keyword argument `table` should be either of type `dict` or `list`, but "
f"is {type(table)})"
)
else:
tqa_pipeline_inputs = [{"table": table, "query": query}]
for tqa_pipeline_input in tqa_pipeline_inputs:
if not isinstance(tqa_pipeline_input["table"], pd.DataFrame):
if tqa_pipeline_input["table"] is None:
raise ValueError("Table cannot be None.")
tqa_pipeline_input["table"] = pd.DataFrame(tqa_pipeline_input["table"])
return tqa_pipeline_inputs
@add_end_docstrings(PIPELINE_INIT_ARGS)
class TableQuestionAnsweringPipeline(Pipeline):
"""
Table Question Answering pipeline using a `ModelForTableQuestionAnswering`. This pipeline is only available in
PyTorch.
Example:
```python
>>> from transformers import pipeline
>>> oracle = pipeline(model="google/tapas-base-finetuned-wtq")
>>> table = {
... "Repository": ["Transformers", "Datasets", "Tokenizers"],
... "Stars": ["36542", "4512", "3934"],
... "Contributors": ["651", "77", "34"],
... "Programming language": ["Python", "Python", "Rust, Python and NodeJS"],
... }
>>> oracle(query="How many stars does the transformers repository have?", table=table)
{'answer': 'AVERAGE > 36542', 'coordinates': [(0, 1)], 'cells': ['36542'], 'aggregator': 'AVERAGE'}
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This tabular question answering pipeline can currently be loaded from [`pipeline`] using the following task
identifier: `"table-question-answering"`.
The models that this pipeline can use are models that have been fine-tuned on a tabular question answering task.
See the up-to-date list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=table-question-answering).
"""
default_input_names = "table,query"
def __init__(self, args_parser=TableQuestionAnsweringArgumentHandler(), *args, **kwargs):
super().__init__(*args, **kwargs)
self._args_parser = args_parser
if self.framework == "tf":
mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy()
mapping.update(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES)
else:
mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES.copy()
mapping.update(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES)
self.check_model_type(mapping)
self.aggregate = bool(getattr(self.model.config, "aggregation_labels", None)) and bool(
getattr(self.model.config, "num_aggregation_labels", None)
)
self.type = "tapas" if hasattr(self.model.config, "aggregation_labels") else None
def batch_inference(self, **inputs):
return self.model(**inputs)
def sequential_inference(self, **inputs):
"""
Inference used for models that need to process sequences in a sequential fashion, like the SQA models which
handle conversational query related to a table.
"""
if self.framework == "pt":
all_logits = []
all_aggregations = []
prev_answers = None
batch_size = inputs["input_ids"].shape[0]
input_ids = inputs["input_ids"].to(self.device)
attention_mask = inputs["attention_mask"].to(self.device)
token_type_ids = inputs["token_type_ids"].to(self.device)
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous
# answer.
if prev_answers is not None:
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example.cpu().numpy()) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = torch.from_numpy(model_labels).type(torch.long).to(self.device)
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
outputs = self.model(
input_ids=input_ids_example.unsqueeze(0),
attention_mask=attention_mask_example.unsqueeze(0),
token_type_ids=token_type_ids_example.unsqueeze(0),
)
logits = outputs.logits
if self.aggregate:
all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits)
dist_per_token = torch.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs * attention_mask_example.type(torch.float32).to(
dist_per_token.probs.device
)
coords_to_probs = collections.defaultdict(list)
for i, p in enumerate(probabilities.squeeze().tolist()):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col = token_type_ids_example[:, 1].tolist()[i] - 1
row = token_type_ids_example[:, 2].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
logits_batch = torch.cat(tuple(all_logits), 0)
return (logits_batch,) if not self.aggregate else (logits_batch, torch.cat(tuple(all_aggregations), 0))
else:
all_logits = []
all_aggregations = []
prev_answers = None
batch_size = inputs["input_ids"].shape[0]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
token_type_ids = inputs["token_type_ids"].numpy()
token_type_ids_example = None
for index in range(batch_size):
# If sequences have already been processed, the token type IDs will be created according to the previous
# answer.
if prev_answers is not None:
prev_labels_example = token_type_ids_example[:, 3] # shape (seq_len,)
model_labels = np.zeros_like(prev_labels_example, dtype=np.int32) # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
for i in range(model_labels.shape[0]):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col_id = token_type_ids_example[:, 1].tolist()[i] - 1
row_id = token_type_ids_example[:, 2].tolist()[i] - 1
if row_id >= 0 and col_id >= 0 and segment_id == 1:
model_labels[i] = int(prev_answers[(col_id, row_id)])
token_type_ids_example[:, 3] = model_labels
input_ids_example = input_ids[index]
attention_mask_example = attention_mask[index] # shape (seq_len,)
token_type_ids_example = token_type_ids[index] # shape (seq_len, 7)
outputs = self.model(
input_ids=np.expand_dims(input_ids_example, axis=0),
attention_mask=np.expand_dims(attention_mask_example, axis=0),
token_type_ids=np.expand_dims(token_type_ids_example, axis=0),
)
logits = outputs.logits
if self.aggregate:
all_aggregations.append(outputs.logits_aggregation)
all_logits.append(logits)
dist_per_token = tfp.distributions.Bernoulli(logits=logits)
probabilities = dist_per_token.probs_parameter() * tf.cast(attention_mask_example, tf.float32)
coords_to_probs = collections.defaultdict(list)
token_type_ids_example = token_type_ids_example
for i, p in enumerate(tf.squeeze(probabilities).numpy().tolist()):
segment_id = token_type_ids_example[:, 0].tolist()[i]
col = token_type_ids_example[:, 1].tolist()[i] - 1
row = token_type_ids_example[:, 2].tolist()[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
coords_to_probs[(col, row)].append(p)
prev_answers = {key: np.array(coords_to_probs[key]).mean() > 0.5 for key in coords_to_probs}
logits_batch = tf.concat(tuple(all_logits), 0)
return (logits_batch,) if not self.aggregate else (logits_batch, tf.concat(tuple(all_aggregations), 0))
def __call__(self, *args, **kwargs):
r"""
Answers queries according to a table. The pipeline accepts several types of inputs which are detailed below:
- `pipeline(table, query)`
- `pipeline(table, [query])`
- `pipeline(table=table, query=query)`
- `pipeline(table=table, query=[query])`
- `pipeline({"table": table, "query": query})`
- `pipeline({"table": table, "query": [query]})`
- `pipeline([{"table": table, "query": query}, {"table": table, "query": query}])`
The `table` argument should be a dict or a DataFrame built from that dict, containing the whole table:
Example:
```python
data = {
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
"age": ["56", "45", "59"],
"number of movies": ["87", "53", "69"],
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
}
```
This dictionary can be passed in as such, or can be converted to a pandas DataFrame:
Example:
```python
import pandas as pd
table = pd.DataFrame.from_dict(data)
```
Args:
table (`pd.DataFrame` or `Dict`):
Pandas DataFrame or dictionary that will be converted to a DataFrame containing all the table values.
See above for an example of dictionary.
query (`str` or `List[str]`):
Query or list of queries that will be sent to the model alongside the table.
sequential (`bool`, *optional*, defaults to `False`):
Whether to do inference sequentially or as a batch. Batching is faster, but models like SQA require the
inference to be done sequentially to extract relations within sequences, given their conversational
nature.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length`
or to the maximum acceptable input length for the model if that argument is not provided. This will
truncate row by row, removing rows from the table.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
Return:
A dictionary or a list of dictionaries containing results: Each result is a dictionary with the following
keys:
- **answer** (`str`) -- The answer of the query given the table. If there is an aggregator, the answer will
be preceded by `AGGREGATOR >`.
- **coordinates** (`List[Tuple[int, int]]`) -- Coordinates of the cells of the answers.
- **cells** (`List[str]`) -- List of strings made up of the answer cell values.
- **aggregator** (`str`) -- If the model has an aggregator, this returns the aggregator.
"""
pipeline_inputs = self._args_parser(*args, **kwargs)
results = super().__call__(pipeline_inputs, **kwargs)
if len(results) == 1:
return results[0]
return results
def _sanitize_parameters(self, sequential=None, padding=None, truncation=None, **kwargs):
preprocess_params = {}
if padding is not None:
preprocess_params["padding"] = padding
if truncation is not None:
preprocess_params["truncation"] = truncation
forward_params = {}
if sequential is not None:
forward_params["sequential"] = sequential
return preprocess_params, forward_params, {}
def preprocess(self, pipeline_input, sequential=None, padding=True, truncation=None):
if truncation is None:
if self.type == "tapas":
truncation = "drop_rows_to_fit"
else:
truncation = "do_not_truncate"
table, query = pipeline_input["table"], pipeline_input["query"]
if table.empty:
raise ValueError("table is empty")
if query is None or query == "":
raise ValueError("query is empty")
inputs = self.tokenizer(table, query, return_tensors=self.framework, truncation=truncation, padding=padding)
inputs["table"] = table
return inputs
def _forward(self, model_inputs, sequential=False):
table = model_inputs.pop("table")
if self.type == "tapas":
if sequential:
outputs = self.sequential_inference(**model_inputs)
else:
outputs = self.batch_inference(**model_inputs)
else:
outputs = self.model.generate(**model_inputs)
model_outputs = {"model_inputs": model_inputs, "table": table, "outputs": outputs}
return model_outputs
def postprocess(self, model_outputs):
inputs = model_outputs["model_inputs"]
table = model_outputs["table"]
outputs = model_outputs["outputs"]
if self.type == "tapas":
if self.aggregate:
logits, logits_agg = outputs[:2]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits, logits_agg)
answer_coordinates_batch, agg_predictions = predictions
aggregators = {i: self.model.config.aggregation_labels[pred] for i, pred in enumerate(agg_predictions)}
no_agg_label_index = self.model.config.no_aggregation_label_index
aggregators_prefix = {
i: aggregators[i] + " > " for i, pred in enumerate(agg_predictions) if pred != no_agg_label_index
}
else:
logits = outputs[0]
predictions = self.tokenizer.convert_logits_to_predictions(inputs, logits)
answer_coordinates_batch = predictions[0]
aggregators = {}
aggregators_prefix = {}
answers = []
for index, coordinates in enumerate(answer_coordinates_batch):
cells = [table.iat[coordinate] for coordinate in coordinates]
aggregator = aggregators.get(index, "")
aggregator_prefix = aggregators_prefix.get(index, "")
answer = {
"answer": aggregator_prefix + ", ".join(cells),
"coordinates": coordinates,
"cells": [table.iat[coordinate] for coordinate in coordinates],
}
if aggregator:
answer["aggregator"] = aggregator
answers.append(answer)
if len(answer) == 0:
raise PipelineException("Empty answer")
else:
answers = [{"answer": answer} for answer in self.tokenizer.batch_decode(outputs, skip_special_tokens=True)]
return answers if len(answers) > 1 else answers[0]
|