Spaces:
Runtime error
Runtime error
File size: 46,952 Bytes
760bde3 6e4c9f7 72fe59d e12d135 ed4b6a1 e12d135 0bfb07f 15f7af5 9546498 760bde3 434a891 72fe59d 40c7708 abcd303 ed7763f 760bde3 4ba09fa 72fe59d 4ba09fa 6061d17 4ba09fa e12d135 7a52d01 aa19a55 3840fde 634639d f76c27b f3804ec 6d54f1e 3b75b11 32f6715 0dae273 3840fde 6f9b26d 3840fde f76c27b 4ba09fa 72fe59d 7a7f9d8 4ba09fa 5ee6e09 f76c27b 5836895 99678ed 5836895 7a52d01 5836895 bd50af0 21dafa0 f76c27b 21dafa0 f76c27b bd50af0 5ee6e09 0dae273 5836895 32f6715 6d54f1e 5836895 abcd303 5836895 0cc37e5 5836895 bd50af0 fb4a881 4ba09fa 7957dbb 4ba09fa 5d0da89 e94be43 4ba09fa e94be43 4ba09fa 72fe59d 4ba09fa 72fe59d 5836895 0cc37e5 bd50af0 6d54f1e 5836895 dfba81f 5836895 dfba81f 5836895 dfba81f 5836895 dfba81f 5836895 dfba81f 5836895 dfba81f 5836895 0cc37e5 5836895 0cc37e5 5836895 4a2684c 5836895 4a2684c 5836895 0cc37e5 5836895 dfba81f 5836895 dfba81f 5836895 72fe59d 5836895 dfba81f 5836895 0bfb07f e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 72fe59d e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 72fe59d ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 ed4b6a1 e12d135 72fe59d af76788 7a7f9d8 4962329 dfba81f 5836895 9003ca5 bd50af0 5836895 7a7f9d8 ddc4ac1 7a7f9d8 ddc4ac1 7a7f9d8 63e6e86 648a7f1 7a7f9d8 6e3e561 7a7f9d8 6e3e561 7a7f9d8 6e3e561 7a7f9d8 ddc4ac1 7a7f9d8 c7d2050 63e6e86 7a7f9d8 72fe59d 2a71ebd 7a7f9d8 bd50af0 2a71ebd 0dae273 2a71ebd bd50af0 27d8fa3 dea5caa 2a71ebd bd50af0 63e6e86 2a71ebd 63e6e86 b902809 634639d b902809 2a71ebd 91f6a3d 2a71ebd 72fe59d 779c33a b4fd607 4ba09fa e94be43 4ba09fa e94be43 3f5ffbb e94be43 2a71ebd e94be43 2a71ebd 9546498 72fe59d 82b6069 4ba09fa 634639d 72fe59d b902809 0cc37e5 2a71ebd 72fe59d 4ba09fa 72fe59d e94be43 72fe59d 63e6e86 2a71ebd 4ba09fa 7a7f9d8 634639d e94be43 82b6069 4ba09fa 82b6069 4ba09fa dae4b5a 4ba09fa ed7763f 4ba09fa e12d135 72fe59d 82b6069 2a71ebd 72fe59d 7a7f9d8 72fe59d 7a7f9d8 2a71ebd 634639d 72fe59d 7a7f9d8 72fe59d 6e4c9f7 72fe59d 82b6069 72fe59d 82b6069 63e6e86 2a71ebd 72fe59d 634639d 72fe59d 634639d f05ab97 634639d 0cc37e5 72fe59d 6e4c9f7 72fe59d 6e4c9f7 82b6069 72fe59d 82b6069 72fe59d 6e4c9f7 72fe59d 2a71ebd 72fe59d 0bfb07f e12d135 c8a8dc4 2a71ebd 0bfb07f 1f8f331 63e6e86 2a71ebd 0bfb07f 2a71ebd 4ba09fa 72fe59d 7a7f9d8 2a71ebd 72fe59d 11e651f 72fe59d 7a7f9d8 bd50af0 9912950 5c28041 9912950 634639d 9912950 634639d 9912950 bd50af0 9912950 bd50af0 ca589ef 1f359be f47bc1e 0cc37e5 f47bc1e 0cc37e5 f47bc1e 0cc37e5 1f359be 82b6069 4ba09fa 6d54f1e 634639d 6d54f1e ed4b6a1 9912950 7a7f9d8 72fe59d 7a7f9d8 dfba81f 634639d 7a7f9d8 bd50af0 1c6fec7 7a7f9d8 4ba09fa 5d0da89 4ba09fa 5d0da89 4ba09fa 72fe59d 5d0da89 72fe59d 4ba09fa ed4b6a1 2a71ebd bd50af0 7a7f9d8 2644166 bd50af0 2a71ebd 2644166 bd50af0 1c6fec7 867ce75 7a52d01 9912950 27d8fa3 0dae273 867ce75 e5f7fa3 6d54f1e fb4a881 82b6069 e12d135 82b6069 ed4b6a1 82b6069 ed4b6a1 82b6069 ed4b6a1 82b6069 e12d135 82b6069 e12d135 82b6069 5ee6e09 82b6069 e12d135 82b6069 e12d135 ed4b6a1 82b6069 0cc37e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 |
import warnings
warnings.filterwarnings('ignore')
import subprocess, io, os, sys, time
run_gradio = False
if os.environ.get('IS_MY_DEBUG') is None:
run_gradio = True
else:
run_gradio = False
# run_gradio = True
if run_gradio:
os.system("pip install gradio==3.50.2")
import gradio as gr
from loguru import logger
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
if os.environ.get('IS_MY_DEBUG') is None:
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
print(f'pip install GroundingDINO = {result}')
# result = subprocess.run(['pip', 'list'], check=True)
# print(f'pip list = {result}')
sys.path.insert(0, './GroundingDINO')
import argparse
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont, ImageOps
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
import cv2
import numpy as np
import matplotlib
matplotlib.use('AGG')
plt = matplotlib.pyplot
# import matplotlib.pyplot as plt
groundingdino_enable = True
sam_enable = True
inpainting_enable = True
ram_enable = False
lama_cleaner_enable = True
kosmos_enable = False
# qwen_enable = True
# from qwen_utils import *
if os.environ.get('IS_MY_DEBUG') is not None:
sam_enable = False
ram_enable = False
inpainting_enable = False
kosmos_enable = False
if lama_cleaner_enable:
try:
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config as lama_Config
except Exception as e:
lama_cleaner_enable = False
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
from util_computer import computer_info
# relate anything
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
from ram_train_eval import RamModel, RamPredictor
from mmengine.config import Config as mmengine_Config
if lama_cleaner_enable:
from lama_cleaner.helper import (
load_img,
numpy_to_bytes,
resize_max_size,
)
# from transformers import AutoProcessor, AutoModelForVision2Seq
import ast
if kosmos_enable:
os.system("pip install transformers@git+https://github.com/huggingface/transformers.git@main")
# os.system("pip install transformers==4.32.0")
from kosmos_utils import *
from util_tencent import getTextTrans
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = 'cpu'
os.makedirs(output_dir, exist_ok=True)
groundingdino_model = None
sam_device = None
sam_model = None
sam_predictor = None
sam_mask_generator = None
sd_model = None
lama_cleaner_model= None
ram_model = None
kosmos_model = None
kosmos_processor = None
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location=device)
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
try:
font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font_size = 36
new_font = ImageFont.truetype(font, font_size)
draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
except Exception as e:
pass
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# # load image
if isinstance(image_path, PIL.Image.Image):
image_pil = image_path
else:
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def xywh_to_xyxy(box, sizeW, sizeH):
if isinstance(box, list):
box = torch.Tensor(box)
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
box[:2] -= box[2:] / 2
box[2:] += box[:2]
box = box.numpy()
return box
def mask_extend(img, box, extend_pixels=10, useRectangle=True):
box[0] = int(box[0])
box[1] = int(box[1])
box[2] = int(box[2])
box[3] = int(box[3])
region = img.crop(tuple(box))
new_width = box[2] - box[0] + 2*extend_pixels
new_height = box[3] - box[1] + 2*extend_pixels
region_BILINEAR = region.resize((int(new_width), int(new_height)))
if useRectangle:
region_draw = ImageDraw.Draw(region_BILINEAR)
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
return img
def mix_masks(imgs):
re_img = 1 - np.asarray(imgs[0].convert("1"))
for i in range(len(imgs)-1):
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
re_img = 1 - re_img
return Image.fromarray(np.uint8(255*re_img))
def set_device():
if os.environ.get('IS_MY_DEBUG') is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
device = 'cpu'
print(f'device={device}')
return device
def load_groundingdino_model(device):
# initialize groundingdino model
logger.info(f"initialize groundingdino model...")
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae, device=device) #'cpu')
return groundingdino_model
def get_sam_vit_h_4b8939():
if not os.path.exists('./sam_vit_h_4b8939.pth'):
logger.info(f"get sam_vit_h_4b8939.pth...")
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
print(f'wget sam_vit_h_4b8939.pth result = {result}')
def load_sam_model(device):
# initialize SAM
global sam_model, sam_predictor, sam_mask_generator, sam_device
get_sam_vit_h_4b8939()
logger.info(f"initialize SAM model...")
sam_device = device
sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
sam_predictor = SamPredictor(sam_model)
sam_mask_generator = SamAutomaticMaskGenerator(sam_model)
def load_sd_model(device):
# initialize stable-diffusion-inpainting
global sd_model
logger.info(f"initialize stable-diffusion-inpainting...")
sd_model = None
if os.environ.get('IS_MY_DEBUG') is None:
sd_model = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision="fp16",
# "stabilityai/stable-diffusion-2-inpainting",
torch_dtype=torch.float16,
)
sd_model = sd_model.to(device)
def load_lama_cleaner_model(device):
# initialize lama_cleaner
global lama_cleaner_model
logger.info(f"initialize lama_cleaner...")
lama_cleaner_model = ModelManager(
name='lama',
device=device,
)
def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
try:
logger.info(f'_______lama_cleaner_process_______1____')
ori_image = image
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
# rotate image
logger.info(f'_______lama_cleaner_process_______2____')
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
logger.info(f'_______lama_cleaner_process_______3____')
image = ori_image
logger.info(f'_______lama_cleaner_process_______4____')
original_shape = ori_image.shape
logger.info(f'_______lama_cleaner_process_______5____')
interpolation = cv2.INTER_CUBIC
size_limit = cleaner_size_limit
if size_limit == -1:
logger.info(f'_______lama_cleaner_process_______6____')
size_limit = max(image.shape)
else:
logger.info(f'_______lama_cleaner_process_______7____')
size_limit = int(size_limit)
logger.info(f'_______lama_cleaner_process_______8____')
config = lama_Config(
ldm_steps=25,
ldm_sampler='plms',
zits_wireframe=True,
hd_strategy='Original',
hd_strategy_crop_margin=196,
hd_strategy_crop_trigger_size=1280,
hd_strategy_resize_limit=2048,
prompt='',
use_croper=False,
croper_x=0,
croper_y=0,
croper_height=512,
croper_width=512,
sd_mask_blur=5,
sd_strength=0.75,
sd_steps=50,
sd_guidance_scale=7.5,
sd_sampler='ddim',
sd_seed=42,
cv2_flag='INPAINT_NS',
cv2_radius=5,
)
logger.info(f'_______lama_cleaner_process_______9____')
if config.sd_seed == -1:
config.sd_seed = random.randint(1, 999999999)
# logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
logger.info(f'_______lama_cleaner_process_______10____')
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
# logger.info(f"Resized image shape_1_: {image.shape}")
# logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
logger.info(f'_______lama_cleaner_process_______11____')
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
# logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
logger.info(f'_______lama_cleaner_process_______12____')
res_np_img = lama_cleaner_model(image, mask, config)
logger.info(f'_______lama_cleaner_process_______13____')
torch.cuda.empty_cache()
logger.info(f'_______lama_cleaner_process_______14____')
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
logger.info(f'_______lama_cleaner_process_______15____')
except Exception as e:
logger.info(f'lama_cleaner_process[Error]:' + str(e))
image = None
return image
class Ram_Predictor(RamPredictor):
def __init__(self, config, device='cpu'):
self.config = config
self.device = torch.device(device)
self._build_model()
def _build_model(self):
self.model = RamModel(**self.config.model).to(self.device)
if self.config.load_from is not None:
self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
self.model.train()
def load_ram_model(device):
# load ram model
global ram_model
if os.environ.get('IS_MY_DEBUG') is not None:
return
model_path = "./checkpoints/ram_epoch12.pth"
ram_config = dict(
model=dict(
pretrained_model_name_or_path='bert-base-uncased',
load_pretrained_weights=False,
num_transformer_layer=2,
input_feature_size=256,
output_feature_size=768,
cls_feature_size=512,
num_relation_classes=56,
pred_type='attention',
loss_type='multi_label_ce',
),
load_from=model_path,
)
ram_config = mmengine_Config(ram_config)
ram_model = Ram_Predictor(ram_config, device)
# visualization
def draw_selected_mask(mask, draw):
color = (255, 0, 0, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_object_mask(mask, draw):
color = (0, 0, 255, 153)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'):
# Define the colors to use for each word
color_red = (255, 0, 0)
color_black = (0, 0, 0)
color_blue = (0, 0, 255)
# Define the initial font size and spacing between words
font_size = 40
# Create a new image with the specified width and white background
image = Image.new('RGB', (width, 60), (255, 255, 255))
try:
# Load the specified font
font = ImageFont.truetype(font_path, font_size)
# Keep increasing the font size until all words fit within the desired width
while True:
# Create a draw object for the image
draw = ImageDraw.Draw(image)
word_spacing = font_size / 2
# Draw each word in the appropriate color
x_offset = word_spacing
draw.text((x_offset, 0), word1, color_red, font=font)
x_offset += font.getsize(word1)[0] + word_spacing
draw.text((x_offset, 0), word2, color_black, font=font)
x_offset += font.getsize(word2)[0] + word_spacing
draw.text((x_offset, 0), word3, color_blue, font=font)
word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3
# Stop increasing font size if the image is within the desired width
if total_width <= width:
break
# Increase font size and reset the draw object
font_size -= 1
image = Image.new('RGB', (width, 50), (255, 255, 255))
font = ImageFont.truetype(font_path, font_size)
draw = None
except Exception as e:
pass
return image
def concatenate_images_vertical(image1, image2):
# Get the dimensions of the two images
width1, height1 = image1.size
width2, height2 = image2.size
# Create a new image with the combined height and the maximum width
new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))
# Paste the first image at the top of the new image
new_image.paste(image1, (0, 0))
# Paste the second image below the first image
new_image.paste(image2, (0, height1))
return new_image
def relate_anything(input_image, k):
logger.info(f'relate_anything_1_{input_image.size}_')
w, h = input_image.size
max_edge = 1500
if w > max_edge or h > max_edge:
ratio = max(w, h) / max_edge
new_size = (int(w / ratio), int(h / ratio))
input_image.thumbnail(new_size)
logger.info(f'relate_anything_2_')
# load image
pil_image = input_image.convert('RGBA')
image = np.array(input_image)
sam_masks = sam_mask_generator.generate(image)
filtered_masks = sort_and_deduplicate(sam_masks)
logger.info(f'relate_anything_3_')
feat_list = []
for fm in filtered_masks:
feat = torch.Tensor(fm['feat']).unsqueeze(0).unsqueeze(0).to(device)
feat_list.append(feat)
feat = torch.cat(feat_list, dim=1).to(device)
matrix_output, rel_triplets = ram_model.predict(feat)
logger.info(f'relate_anything_4_')
pil_image_list = []
for i, rel in enumerate(rel_triplets[:k]):
s,o,r = int(rel[0]),int(rel[1]),int(rel[2])
relation = relation_classes[r]
mask_image = Image.new('RGBA', pil_image.size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
draw_selected_mask(filtered_masks[s]['segmentation'], mask_draw)
draw_object_mask(filtered_masks[o]['segmentation'], mask_draw)
current_pil_image = pil_image.copy()
current_pil_image.alpha_composite(mask_image)
title_image = create_title_image('Red', relation, 'Blue', current_pil_image.size[0])
concate_pil_image = concatenate_images_vertical(current_pil_image, title_image)
pil_image_list.append(concate_pil_image)
logger.info(f'relate_anything_5_{len(pil_image_list)}')
return pil_image_list
mask_source_draw = "draw a mask on input image"
mask_source_segment = "type what to detect below"
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def run_anything_task(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input, cleaner_size_limit=1080):
text_prompt = getTextTrans(text_prompt, source='zh', target='en')
inpaint_prompt = getTextTrans(inpaint_prompt, source='zh', target='en')
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
if (task_type == 'Kosmos-2'):
global kosmos_model, kosmos_processor
if isinstance(input_image, dict):
image_pil, image = load_image(input_image['image'].convert("RGB"))
input_img = input_image['image']
else:
image_pil, image = load_image(input_image.convert("RGB"))
input_img = input_image
kosmos_image, kosmos_text, kosmos_entities = kosmos_generate_predictions(image_pil, kosmos_input, kosmos_model, kosmos_processor)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return None, None, time_cost_str, kosmos_image, gr.Textbox.update(visible=(time_cost_str !='')), kosmos_text, kosmos_entities
if (task_type == 'relate anything'):
output_images = relate_anything(input_image['image'], num_relation)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return output_images, gr.Gallery.update(label='relate images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
text_prompt = text_prompt.strip()
if not ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw):
if text_prompt == '':
return [], gr.Gallery.update(label='Detection prompt is not found!ππππ'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
if input_image is None:
return [], gr.Gallery.update(label='Please upload a image!ππππ'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
file_temp = int(time.time())
logger.info(f'run_anything_task_002/{device}_[{file_temp}]_{task_type}/{inpaint_mode}/[{mask_source_radio}]/{remove_mode}/{remove_mask_extend}_[{text_prompt}]/[{inpaint_prompt}]___1_')
output_images = []
# load image
if mask_source_radio == mask_source_draw:
input_mask_pil = input_image['mask']
input_mask = np.array(input_mask_pil.convert("L"))
if isinstance(input_image, dict):
image_pil, image = load_image(input_image['image'].convert("RGB"))
input_img = input_image['image']
output_images.append(input_image['image'])
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
else:
image_pil, image = load_image(input_image.convert("RGB"))
input_img = input_image
output_images.append(input_image)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
size = image_pil.size
H, W = size[1], size[0]
# run grounding dino model
if (task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_draw:
pass
else:
groundingdino_device = 'cpu'
if device != 'cpu':
try:
from groundingdino import _C
groundingdino_device = 'cuda:0'
except:
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
boxes_filt, pred_phrases = get_grounding_output(
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
)
if boxes_filt.size(0) == 0:
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1___{groundingdino_device}/[No objects detected, please try others.]_')
return [], gr.Gallery.update(label='No objects detected, please try others.ππππ'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
boxes_filt_ori = copy.deepcopy(boxes_filt)
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
output_images.append(image_with_box)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_2_')
if task_type == 'segment' or ((task_type in ['inpainting', 'outpainting'] or task_type == 'remove') and mask_source_radio == mask_source_segment):
image = np.array(input_img)
if sam_predictor:
sam_predictor.set_image(image)
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
if sam_predictor:
boxes_filt = boxes_filt.to(sam_device)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
masks, _, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
# masks: [9, 1, 512, 512]
assert sam_checkpoint, 'sam_checkpoint is not found!'
else:
masks = torch.zeros(len(boxes_filt), 1, H, W)
mask_count = 0
for box in boxes_filt:
masks[mask_count, 0, int(box[1]):int(box[3]), int(box[0]):int(box[2])] = 1
mask_count += 1
masks = torch.where(masks > 0, True, False)
run_mode = "rectangle"
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.cpu().numpy(), plt.gca(), label)
plt.axis('off')
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
plt.savefig(image_path, bbox_inches="tight")
plt.clf()
plt.close('all')
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
os.remove(image_path)
output_images.append(Image.fromarray(segment_image_result))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_3_')
if task_type == 'detection' or task_type == 'segment':
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
elif task_type in ['inpainting', 'outpainting'] or task_type == 'remove':
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
task_type = 'remove'
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_4_')
if mask_source_radio == mask_source_draw:
mask_pil = input_mask_pil
mask = input_mask
else:
masks_ori = copy.deepcopy(masks)
if inpaint_mode == 'merge':
masks = torch.sum(masks, dim=0).unsqueeze(0)
masks = torch.where(masks > 0, True, False)
mask = masks[0][0].cpu().numpy()
mask_pil = Image.fromarray(mask)
output_images.append(mask_pil.convert("RGB"))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
if task_type in ['inpainting', 'outpainting']:
# inpainting pipeline
image_source_for_inpaint = image_pil.resize((512, 512))
image_mask_for_inpaint = mask_pil.resize((512, 512))
if task_type in ['outpainting']:
# reverse mask
img_arr = np.array(image_mask_for_inpaint)
img_arr = np.where(img_arr > 0, 1, img_arr)
img_arr = 1 - img_arr
image_mask_for_inpaint = Image.fromarray(255*img_arr.astype('uint8'))
output_images.append(image_mask_for_inpaint.convert("RGB"))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
image_inpainting = sd_model(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
else:
# remove from mask
if mask_source_radio == mask_source_segment:
mask_imgs = []
masks_shape = masks_ori.shape
boxes_filt_ori_array = boxes_filt_ori.numpy()
if inpaint_mode == 'merge':
extend_shape_0 = masks_shape[0]
extend_shape_1 = masks_shape[1]
else:
extend_shape_0 = 1
extend_shape_1 = 1
for i in range(extend_shape_0):
for j in range(extend_shape_1):
mask = masks_ori[i][j].cpu().numpy()
mask_pil = Image.fromarray(mask)
if remove_mode == 'segment':
useRectangle = False
else:
useRectangle = True
try:
remove_mask_extend = int(remove_mask_extend)
except:
remove_mask_extend = 10
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), W, H),
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
mask_imgs.append(mask_pil_exp)
mask_pil = mix_masks(mask_imgs)
output_images.append(mask_pil.convert("RGB"))
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_6_')
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")), cleaner_size_limit)
if image_inpainting is None:
logger.info(f'run_anything_task_failed_')
return None, None, None, None, None, None, None
# output_images.append(image_inpainting)
# run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_7_')
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
output_images.append(image_inpainting)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
logger.info(f'run_anything_task_[{file_temp}]_{task_type}_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
else:
logger.info(f"task_type:{task_type} error!")
logger.info(f'run_anything_task_[{file_temp}]_9_9_')
return output_images, gr.Gallery.update(label='result images'), time_cost_str, gr.Textbox.update(visible=(time_cost_str !='')), None, None, None
def change_radio_display(task_type, mask_source_radio):
text_prompt_visible = True
inpaint_prompt_visible = False
mask_source_radio_visible = False
num_relation_visible = False
image_gallery_visible = True
kosmos_input_visible = False
kosmos_output_visible = False
kosmos_text_output_visible = False
if task_type == "Kosmos-2":
if kosmos_enable:
text_prompt_visible = False
image_gallery_visible = False
kosmos_input_visible = True
kosmos_output_visible = True
kosmos_text_output_visible = True
if task_type in ['inpainting', 'outpainting']:
inpaint_prompt_visible = True
if task_type in ['inpainting', 'outpainting'] or task_type == "remove":
mask_source_radio_visible = True
if mask_source_radio == mask_source_draw:
text_prompt_visible = False
if task_type == "relate anything":
text_prompt_visible = False
num_relation_visible = True
return (gr.Textbox.update(visible=text_prompt_visible),
gr.Textbox.update(visible=inpaint_prompt_visible),
gr.Radio.update(visible=mask_source_radio_visible),
gr.Slider.update(visible=num_relation_visible),
gr.Gallery.update(visible=image_gallery_visible),
gr.Radio.update(visible=kosmos_input_visible),
gr.Image.update(visible=kosmos_output_visible),
gr.HighlightedText.update(visible=kosmos_text_output_visible))
def get_model_device(module):
try:
if module is None:
return 'None'
if isinstance(module, torch.nn.DataParallel):
module = module.module
for submodule in module.children():
if hasattr(submodule, "_parameters"):
parameters = submodule._parameters
if "weight" in parameters:
return parameters["weight"].device
return 'UnKnown'
except Exception as e:
return 'Error'
def main_gradio(args):
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
task_types = ["detection"]
if sam_enable:
task_types.append("segment")
if inpainting_enable:
task_types.append("inpainting")
task_types.append("outpainting")
if lama_cleaner_enable:
task_types.append("remove")
if ram_enable:
task_types.append("relate anything")
if kosmos_enable:
task_types.append("Kosmos-2")
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload",
height=512, brush_color='#00FFFF', mask_opacity=0.6)
task_type = gr.Radio(task_types, value="detection",
label='Task type', visible=True)
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
value=mask_source_segment, label="Mask from",
visible=False)
text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")
inpaint_prompt = gr.Textbox(label="Inpaint/Outpaint Prompt (if this is empty, then remove)", visible=False)
num_relation = gr.Slider(label="How many relations do you want to see", minimum=1, maximum=20, value=5, step=1, visible=False)
kosmos_input = gr.Radio(["Brief", "Detailed"], label="Kosmos Description Type", value="Brief", visible=False)
run_button = gr.Button(label="Run", visible=True)
with gr.Accordion("Advanced options", open=False) as advanced_options:
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
)
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
with gr.Row():
with gr.Column(scale=1):
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
with gr.Column(scale=1):
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
with gr.Column():
image_gallery = gr.Gallery(label="result images", show_label=True, elem_id="gallery", height=512, visible=True
).style(preview=True, columns=[5], object_fit="scale-down", height="auto")
time_cost = gr.Textbox(label="Time cost by step (ms):", visible=False, interactive=False)
kosmos_output = gr.Image(type="pil", label="result images", visible=False)
kosmos_text_output = gr.HighlightedText(
label="Generated Description",
combine_adjacent=False,
show_legend=True,
visible=False,
).style(color_map=color_map)
# record which text span (label) is selected
selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False)
# record the current `entities`
entity_output = gr.Textbox(visible=False)
# get the current selected span label
def get_text_span_label(evt: gr.SelectData):
if evt.value[-1] is None:
return -1
return int(evt.value[-1])
# and set this information to `selected`
kosmos_text_output.select(get_text_span_label, None, selected)
# update output image when we change the span (enity) selection
def update_output_image(img_input, image_output, entities, idx):
entities = ast.literal_eval(entities)
updated_image = draw_entity_boxes_on_image(img_input, entities, entity_index=idx)
return updated_image
selected.change(update_output_image, [kosmos_output, kosmos_output, entity_output, selected], [kosmos_output])
run_button.click(fn=run_anything_task, inputs=[
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend, num_relation, kosmos_input],
outputs=[image_gallery, image_gallery, time_cost, time_cost, kosmos_output, kosmos_text_output, entity_output], show_progress=True, queue=True)
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation])
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio],
outputs=[text_prompt, inpaint_prompt, mask_source_radio, num_relation,
image_gallery, kosmos_input, kosmos_output, kosmos_text_output
])
DESCRIPTION = f'### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). <br>'
if lama_cleaner_enable:
DESCRIPTION += f'Remove(cleaner) from [lama-cleaner](https://github.com/Sanster/lama-cleaner). <br>'
if kosmos_enable:
DESCRIPTION += f'Kosmos-2 from [Kosmos-2](https://github.com/microsoft/unilm/tree/master/kosmos-2). <br>'
if ram_enable:
DESCRIPTION += f'RAM from [RelateAnything](https://github.com/Luodian/RelateAnything). <br>'
DESCRIPTION += f'Thanks for their excellent work.'
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. \
<a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
gr.Markdown(DESCRIPTION)
print(f'device = {device}')
print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
computer_info()
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
import signal
import json
from datetime import date, datetime, timedelta
from gevent import pywsgi
import base64
def imgFile_to_base64(image_file):
with open(image_file, "rb") as f:
im_bytes = f.read()
im_b64_encode = base64.b64encode(im_bytes)
im_b64 = im_b64_encode.decode("utf8")
return im_b64
def base64_to_bytes(im_b64):
im_b64_encode = im_b64.encode("utf-8")
im_bytes = base64.b64decode(im_b64_encode)
return im_bytes
def base64_to_PILImage(im_b64):
im_bytes = base64_to_bytes(im_b64)
pil_img = Image.open(io.BytesIO(im_bytes))
return pil_img
class API_Starter:
def __init__(self):
from flask import Flask, request, jsonify, make_response
from flask_cors import CORS, cross_origin
import logging
app = Flask(__name__)
app.logger.setLevel(logging.ERROR)
CORS(app, supports_credentials=True, resources={r"/*": {"origins": "*"}})
@app.route('/imgCLeaner', methods=['GET', 'POST'])
@cross_origin()
def processAssist():
if request.method == 'GET':
ret_json = {'code': -1, 'reason':'no support to get'}
elif request.method == 'POST':
request_data = request.data.decode('utf-8')
data = json.loads(request_data)
result = self.handle_data(data)
if result is None:
ret_json = {'code': -2, 'reason':'handle error'}
else:
ret_json = {'code': 0, 'result':result}
return jsonify(ret_json)
self.app = app
now_time = datetime.now().strftime('%Y%m%d_%H%M%S')
logger.add(f'./logs/logger_[{args.port}]_{now_time}.log')
signal.signal(signal.SIGINT, self.signal_handler)
def handle_data(self, data):
im_b64 = data['img']
img = base64_to_PILImage(im_b64)
remove_texts = data['remove_texts']
remove_mask_extend = data['mask_extend']
results = run_anything_task(input_image = img,
text_prompt = f"{remove_texts}",
task_type = 'remove',
inpaint_prompt = '',
box_threshold = 0.3,
text_threshold = 0.25,
iou_threshold = 0.8,
inpaint_mode = "merge",
mask_source_radio = "type what to detect below",
remove_mode = "rectangle", # ["segment", "rectangle"]
remove_mask_extend = f"{remove_mask_extend}",
num_relation = 5,
kosmos_input = None,
cleaner_size_limit = -1,
)
output_images = results[0]
if output_images is None:
return None
ret_json_images = []
file_temp = int(time.time())
count = 0
output_images = output_images[-1:]
for image_pil in output_images:
try:
img_format = image_pil.format.lower()
except Exception as e:
img_format = 'png'
image_path = os.path.join(output_dir, f"api_images_{file_temp}_{count}.{img_format}")
count += 1
try:
image_pil.save(image_path)
except Exception as e:
Image.fromarray(image_pil).save(image_path)
im_b64 = imgFile_to_base64(image_path)
ret_json_images.append(im_b64)
os.remove(image_path)
data = {
'imgs': ret_json_images,
}
return data
def signal_handler(self, signal, frame):
print('\nSignal Catched! You have just type Ctrl+C!')
sys.exit(0)
def run(self):
from gevent import pywsgi
logger.info(f'\nargs={args}\n')
computer_info()
print(f"Start a api server: http://0.0.0.0:{args.port}/imgCLeaner")
server = pywsgi.WSGIServer(('0.0.0.0', args.port), self.app)
server.serve_forever()
def main_api(args):
if args.port == 0:
print('Please give valid port!')
else:
api_starter = API_Starter()
api_starter.run()
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument("--port", "-p", type=int, default=7860, help="port")
args, _ = parser.parse_known_args()
print(f'args = {args}')
if os.environ.get('IS_MY_DEBUG') is None:
os.system("pip list")
device = set_device()
if device == 'cpu':
kosmos_enable = False
if kosmos_enable:
kosmos_model, kosmos_processor = load_kosmos_model(device)
if groundingdino_enable:
groundingdino_model = load_groundingdino_model('cpu')
if sam_enable:
load_sam_model(device)
if inpainting_enable:
load_sd_model(device)
if lama_cleaner_enable:
load_lama_cleaner_model(device)
if ram_enable:
load_ram_model(device)
if os.environ.get('IS_MY_DEBUG') is None:
os.system("pip list")
if run_gradio:
# Provide gradio services
main_gradio(args)
else:
# Provide API services
main_api(args)
|