File size: 25,624 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import base64
import os
from io import BytesIO
from typing import TYPE_CHECKING, Dict, Iterable, List, Optional, Tuple, Union

import numpy as np
import requests
from packaging import version

from .utils import (
    ExplicitEnum,
    is_jax_tensor,
    is_tf_tensor,
    is_torch_available,
    is_torch_tensor,
    is_vision_available,
    requires_backends,
    to_numpy,
)
from .utils.constants import (  # noqa: F401
    IMAGENET_DEFAULT_MEAN,
    IMAGENET_DEFAULT_STD,
    IMAGENET_STANDARD_MEAN,
    IMAGENET_STANDARD_STD,
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
)


if is_vision_available():
    import PIL.Image
    import PIL.ImageOps

    if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
        PILImageResampling = PIL.Image.Resampling
    else:
        PILImageResampling = PIL.Image

if TYPE_CHECKING:
    if is_torch_available():
        import torch


ImageInput = Union[
    "PIL.Image.Image", np.ndarray, "torch.Tensor", List["PIL.Image.Image"], List[np.ndarray], List["torch.Tensor"]
]  # noqa


class ChannelDimension(ExplicitEnum):
    FIRST = "channels_first"
    LAST = "channels_last"


def is_pil_image(img):
    return is_vision_available() and isinstance(img, PIL.Image.Image)


def is_valid_image(img):
    return (
        (is_vision_available() and isinstance(img, PIL.Image.Image))
        or isinstance(img, np.ndarray)
        or is_torch_tensor(img)
        or is_tf_tensor(img)
        or is_jax_tensor(img)
    )


def valid_images(imgs):
    # If we have an list of images, make sure every image is valid
    if isinstance(imgs, (list, tuple)):
        for img in imgs:
            if not valid_images(img):
                return False
    # If not a list of tuple, we have been given a single image or batched tensor of images
    elif not is_valid_image(imgs):
        return False
    return True


def is_batched(img):
    if isinstance(img, (list, tuple)):
        return is_valid_image(img[0])
    return False


def is_scaled_image(image: np.ndarray) -> bool:
    """
    Checks to see whether the pixel values have already been rescaled to [0, 1].
    """
    if image.dtype == np.uint8:
        return False

    # It's possible the image has pixel values in [0, 255] but is of floating type
    return np.min(image) >= 0 and np.max(image) <= 1


def make_list_of_images(images, expected_ndims: int = 3) -> List[ImageInput]:
    """
    Ensure that the input is a list of images. If the input is a single image, it is converted to a list of length 1.
    If the input is a batch of images, it is converted to a list of images.

    Args:
        images (`ImageInput`):
            Image of images to turn into a list of images.
        expected_ndims (`int`, *optional*, defaults to 3):
            Expected number of dimensions for a single input image. If the input image has a different number of
            dimensions, an error is raised.
    """
    if is_batched(images):
        return images

    # Either the input is a single image, in which case we create a list of length 1
    if isinstance(images, PIL.Image.Image):
        # PIL images are never batched
        return [images]

    if is_valid_image(images):
        if images.ndim == expected_ndims + 1:
            # Batch of images
            images = list(images)
        elif images.ndim == expected_ndims:
            # Single image
            images = [images]
        else:
            raise ValueError(
                f"Invalid image shape. Expected either {expected_ndims + 1} or {expected_ndims} dimensions, but got"
                f" {images.ndim} dimensions."
            )
        return images
    raise ValueError(
        "Invalid image type. Expected either PIL.Image.Image, numpy.ndarray, torch.Tensor, tf.Tensor or "
        f"jax.ndarray, but got {type(images)}."
    )


def to_numpy_array(img) -> np.ndarray:
    if not is_valid_image(img):
        raise ValueError(f"Invalid image type: {type(img)}")

    if is_vision_available() and isinstance(img, PIL.Image.Image):
        return np.array(img)
    return to_numpy(img)


def infer_channel_dimension_format(
    image: np.ndarray, num_channels: Optional[Union[int, Tuple[int, ...]]] = None
) -> ChannelDimension:
    """
    Infers the channel dimension format of `image`.

    Args:
        image (`np.ndarray`):
            The image to infer the channel dimension of.
        num_channels (`int` or `Tuple[int, ...]`, *optional*, defaults to `(1, 3)`):
            The number of channels of the image.

    Returns:
        The channel dimension of the image.
    """
    num_channels = num_channels if num_channels is not None else (1, 3)
    num_channels = (num_channels,) if isinstance(num_channels, int) else num_channels

    if image.ndim == 3:
        first_dim, last_dim = 0, 2
    elif image.ndim == 4:
        first_dim, last_dim = 1, 3
    else:
        raise ValueError(f"Unsupported number of image dimensions: {image.ndim}")

    if image.shape[first_dim] in num_channels:
        return ChannelDimension.FIRST
    elif image.shape[last_dim] in num_channels:
        return ChannelDimension.LAST
    raise ValueError("Unable to infer channel dimension format")


def get_channel_dimension_axis(
    image: np.ndarray, input_data_format: Optional[Union[ChannelDimension, str]] = None
) -> int:
    """
    Returns the channel dimension axis of the image.

    Args:
        image (`np.ndarray`):
            The image to get the channel dimension axis of.
        input_data_format (`ChannelDimension` or `str`, *optional*):
            The channel dimension format of the image. If `None`, will infer the channel dimension from the image.

    Returns:
        The channel dimension axis of the image.
    """
    if input_data_format is None:
        input_data_format = infer_channel_dimension_format(image)
    if input_data_format == ChannelDimension.FIRST:
        return image.ndim - 3
    elif input_data_format == ChannelDimension.LAST:
        return image.ndim - 1
    raise ValueError(f"Unsupported data format: {input_data_format}")


def get_image_size(image: np.ndarray, channel_dim: ChannelDimension = None) -> Tuple[int, int]:
    """
    Returns the (height, width) dimensions of the image.

    Args:
        image (`np.ndarray`):
            The image to get the dimensions of.
        channel_dim (`ChannelDimension`, *optional*):
            Which dimension the channel dimension is in. If `None`, will infer the channel dimension from the image.

    Returns:
        A tuple of the image's height and width.
    """
    if channel_dim is None:
        channel_dim = infer_channel_dimension_format(image)

    if channel_dim == ChannelDimension.FIRST:
        return image.shape[-2], image.shape[-1]
    elif channel_dim == ChannelDimension.LAST:
        return image.shape[-3], image.shape[-2]
    else:
        raise ValueError(f"Unsupported data format: {channel_dim}")


def is_valid_annotation_coco_detection(annotation: Dict[str, Union[List, Tuple]]) -> bool:
    if (
        isinstance(annotation, dict)
        and "image_id" in annotation
        and "annotations" in annotation
        and isinstance(annotation["annotations"], (list, tuple))
        and (
            # an image can have no annotations
            len(annotation["annotations"]) == 0
            or isinstance(annotation["annotations"][0], dict)
        )
    ):
        return True
    return False


def is_valid_annotation_coco_panoptic(annotation: Dict[str, Union[List, Tuple]]) -> bool:
    if (
        isinstance(annotation, dict)
        and "image_id" in annotation
        and "segments_info" in annotation
        and "file_name" in annotation
        and isinstance(annotation["segments_info"], (list, tuple))
        and (
            # an image can have no segments
            len(annotation["segments_info"]) == 0
            or isinstance(annotation["segments_info"][0], dict)
        )
    ):
        return True
    return False


def valid_coco_detection_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
    return all(is_valid_annotation_coco_detection(ann) for ann in annotations)


def valid_coco_panoptic_annotations(annotations: Iterable[Dict[str, Union[List, Tuple]]]) -> bool:
    return all(is_valid_annotation_coco_panoptic(ann) for ann in annotations)


def load_image(image: Union[str, "PIL.Image.Image"], timeout: Optional[float] = None) -> "PIL.Image.Image":
    """
    Loads `image` to a PIL Image.

    Args:
        image (`str` or `PIL.Image.Image`):
            The image to convert to the PIL Image format.
        timeout (`float`, *optional*):
            The timeout value in seconds for the URL request.

    Returns:
        `PIL.Image.Image`: A PIL Image.
    """
    requires_backends(load_image, ["vision"])
    if isinstance(image, str):
        if image.startswith("http://") or image.startswith("https://"):
            # We need to actually check for a real protocol, otherwise it's impossible to use a local file
            # like http_huggingface_co.png
            image = PIL.Image.open(requests.get(image, stream=True, timeout=timeout).raw)
        elif os.path.isfile(image):
            image = PIL.Image.open(image)
        else:
            if image.startswith("data:image/"):
                image = image.split(",")[1]

            # Try to load as base64
            try:
                b64 = base64.b64decode(image, validate=True)
                image = PIL.Image.open(BytesIO(b64))
            except Exception as e:
                raise ValueError(
                    f"Incorrect image source. Must be a valid URL starting with `http://` or `https://`, a valid path to an image file, or a base64 encoded string. Got {image}. Failed with {e}"
                )
    elif isinstance(image, PIL.Image.Image):
        image = image
    else:
        raise ValueError(
            "Incorrect format used for image. Should be an url linking to an image, a base64 string, a local path, or a PIL image."
        )
    image = PIL.ImageOps.exif_transpose(image)
    image = image.convert("RGB")
    return image


# In the future we can add a TF implementation here when we have TF models.
class ImageFeatureExtractionMixin:
    """
    Mixin that contain utilities for preparing image features.
    """

    def _ensure_format_supported(self, image):
        if not isinstance(image, (PIL.Image.Image, np.ndarray)) and not is_torch_tensor(image):
            raise ValueError(
                f"Got type {type(image)} which is not supported, only `PIL.Image.Image`, `np.array` and "
                "`torch.Tensor` are."
            )

    def to_pil_image(self, image, rescale=None):
        """
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        """
        self._ensure_format_supported(image)

        if is_torch_tensor(image):
            image = image.numpy()

        if isinstance(image, np.ndarray):
            if rescale is None:
                # rescale default to the array being of floating type.
                rescale = isinstance(image.flat[0], np.floating)
            # If the channel as been moved to first dim, we put it back at the end.
            if image.ndim == 3 and image.shape[0] in [1, 3]:
                image = image.transpose(1, 2, 0)
            if rescale:
                image = image * 255
            image = image.astype(np.uint8)
            return PIL.Image.fromarray(image)
        return image

    def convert_rgb(self, image):
        """
        Converts `PIL.Image.Image` to RGB format.

        Args:
            image (`PIL.Image.Image`):
                The image to convert.
        """
        self._ensure_format_supported(image)
        if not isinstance(image, PIL.Image.Image):
            return image

        return image.convert("RGB")

    def rescale(self, image: np.ndarray, scale: Union[float, int]) -> np.ndarray:
        """
        Rescale a numpy image by scale amount
        """
        self._ensure_format_supported(image)
        return image * scale

    def to_numpy_array(self, image, rescale=None, channel_first=True):
        """
        Converts `image` to a numpy array. Optionally rescales it and puts the channel dimension as the first
        dimension.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to convert to a NumPy array.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Will
                default to `True` if the image is a PIL Image or an array/tensor of integers, `False` otherwise.
            channel_first (`bool`, *optional*, defaults to `True`):
                Whether or not to permute the dimensions of the image to put the channel dimension first.
        """
        self._ensure_format_supported(image)

        if isinstance(image, PIL.Image.Image):
            image = np.array(image)

        if is_torch_tensor(image):
            image = image.numpy()

        rescale = isinstance(image.flat[0], np.integer) if rescale is None else rescale

        if rescale:
            image = self.rescale(image.astype(np.float32), 1 / 255.0)

        if channel_first and image.ndim == 3:
            image = image.transpose(2, 0, 1)

        return image

    def expand_dims(self, image):
        """
        Expands 2-dimensional `image` to 3 dimensions.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to expand.
        """
        self._ensure_format_supported(image)

        # Do nothing if PIL image
        if isinstance(image, PIL.Image.Image):
            return image

        if is_torch_tensor(image):
            image = image.unsqueeze(0)
        else:
            image = np.expand_dims(image, axis=0)
        return image

    def normalize(self, image, mean, std, rescale=False):
        """
        Normalizes `image` with `mean` and `std`. Note that this will trigger a conversion of `image` to a NumPy array
        if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to normalize.
            mean (`List[float]` or `np.ndarray` or `torch.Tensor`):
                The mean (per channel) to use for normalization.
            std (`List[float]` or `np.ndarray` or `torch.Tensor`):
                The standard deviation (per channel) to use for normalization.
            rescale (`bool`, *optional*, defaults to `False`):
                Whether or not to rescale the image to be between 0 and 1. If a PIL image is provided, scaling will
                happen automatically.
        """
        self._ensure_format_supported(image)

        if isinstance(image, PIL.Image.Image):
            image = self.to_numpy_array(image, rescale=True)
        # If the input image is a PIL image, it automatically gets rescaled. If it's another
        # type it may need rescaling.
        elif rescale:
            if isinstance(image, np.ndarray):
                image = self.rescale(image.astype(np.float32), 1 / 255.0)
            elif is_torch_tensor(image):
                image = self.rescale(image.float(), 1 / 255.0)

        if isinstance(image, np.ndarray):
            if not isinstance(mean, np.ndarray):
                mean = np.array(mean).astype(image.dtype)
            if not isinstance(std, np.ndarray):
                std = np.array(std).astype(image.dtype)
        elif is_torch_tensor(image):
            import torch

            if not isinstance(mean, torch.Tensor):
                mean = torch.tensor(mean)
            if not isinstance(std, torch.Tensor):
                std = torch.tensor(std)

        if image.ndim == 3 and image.shape[0] in [1, 3]:
            return (image - mean[:, None, None]) / std[:, None, None]
        else:
            return (image - mean) / std

    def resize(self, image, size, resample=None, default_to_square=True, max_size=None):
        """
        Resizes `image`. Enforces conversion of input to PIL.Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to resize.
            size (`int` or `Tuple[int, int]`):
                The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be
                matched to this.

                If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
                `size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to
                this number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
            resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
                The filter to user for resampling.
            default_to_square (`bool`, *optional*, defaults to `True`):
                How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a
                square (`size`,`size`). If set to `False`, will replicate
                [`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
                with support for resizing only the smallest edge and providing an optional `max_size`.
            max_size (`int`, *optional*, defaults to `None`):
                The maximum allowed for the longer edge of the resized image: if the longer edge of the image is
                greater than `max_size` after being resized according to `size`, then the image is resized again so
                that the longer edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller
                edge may be shorter than `size`. Only used if `default_to_square` is `False`.

        Returns:
            image: A resized `PIL.Image.Image`.
        """
        resample = resample if resample is not None else PILImageResampling.BILINEAR

        self._ensure_format_supported(image)

        if not isinstance(image, PIL.Image.Image):
            image = self.to_pil_image(image)

        if isinstance(size, list):
            size = tuple(size)

        if isinstance(size, int) or len(size) == 1:
            if default_to_square:
                size = (size, size) if isinstance(size, int) else (size[0], size[0])
            else:
                width, height = image.size
                # specified size only for the smallest edge
                short, long = (width, height) if width <= height else (height, width)
                requested_new_short = size if isinstance(size, int) else size[0]

                if short == requested_new_short:
                    return image

                new_short, new_long = requested_new_short, int(requested_new_short * long / short)

                if max_size is not None:
                    if max_size <= requested_new_short:
                        raise ValueError(
                            f"max_size = {max_size} must be strictly greater than the requested "
                            f"size for the smaller edge size = {size}"
                        )
                    if new_long > max_size:
                        new_short, new_long = int(max_size * new_short / new_long), max_size

                size = (new_short, new_long) if width <= height else (new_long, new_short)

        return image.resize(size, resample=resample)

    def center_crop(self, image, size):
        """
        Crops `image` to the given size using a center crop. Note that if the image is too small to be cropped to the
        size given, it will be padded (so the returned result has the size asked).

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape (n_channels, height, width) or (height, width, n_channels)):
                The image to resize.
            size (`int` or `Tuple[int, int]`):
                The size to which crop the image.

        Returns:
            new_image: A center cropped `PIL.Image.Image` or `np.ndarray` or `torch.Tensor` of shape: (n_channels,
            height, width).
        """
        self._ensure_format_supported(image)

        if not isinstance(size, tuple):
            size = (size, size)

        # PIL Image.size is (width, height) but NumPy array and torch Tensors have (height, width)
        if is_torch_tensor(image) or isinstance(image, np.ndarray):
            if image.ndim == 2:
                image = self.expand_dims(image)
            image_shape = image.shape[1:] if image.shape[0] in [1, 3] else image.shape[:2]
        else:
            image_shape = (image.size[1], image.size[0])

        top = (image_shape[0] - size[0]) // 2
        bottom = top + size[0]  # In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
        left = (image_shape[1] - size[1]) // 2
        right = left + size[1]  # In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.

        # For PIL Images we have a method to crop directly.
        if isinstance(image, PIL.Image.Image):
            return image.crop((left, top, right, bottom))

        # Check if image is in (n_channels, height, width) or (height, width, n_channels) format
        channel_first = True if image.shape[0] in [1, 3] else False

        # Transpose (height, width, n_channels) format images
        if not channel_first:
            if isinstance(image, np.ndarray):
                image = image.transpose(2, 0, 1)
            if is_torch_tensor(image):
                image = image.permute(2, 0, 1)

        # Check if cropped area is within image boundaries
        if top >= 0 and bottom <= image_shape[0] and left >= 0 and right <= image_shape[1]:
            return image[..., top:bottom, left:right]

        # Otherwise, we may need to pad if the image is too small. Oh joy...
        new_shape = image.shape[:-2] + (max(size[0], image_shape[0]), max(size[1], image_shape[1]))
        if isinstance(image, np.ndarray):
            new_image = np.zeros_like(image, shape=new_shape)
        elif is_torch_tensor(image):
            new_image = image.new_zeros(new_shape)

        top_pad = (new_shape[-2] - image_shape[0]) // 2
        bottom_pad = top_pad + image_shape[0]
        left_pad = (new_shape[-1] - image_shape[1]) // 2
        right_pad = left_pad + image_shape[1]
        new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image

        top += top_pad
        bottom += top_pad
        left += left_pad
        right += left_pad

        new_image = new_image[
            ..., max(0, top) : min(new_image.shape[-2], bottom), max(0, left) : min(new_image.shape[-1], right)
        ]

        return new_image

    def flip_channel_order(self, image):
        """
        Flips the channel order of `image` from RGB to BGR, or vice versa. Note that this will trigger a conversion of
        `image` to a NumPy array if it's a PIL Image.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image whose color channels to flip. If `np.ndarray` or `torch.Tensor`, the channel dimension should
                be first.
        """
        self._ensure_format_supported(image)

        if isinstance(image, PIL.Image.Image):
            image = self.to_numpy_array(image)

        return image[::-1, :, :]

    def rotate(self, image, angle, resample=None, expand=0, center=None, translate=None, fillcolor=None):
        """
        Returns a rotated copy of `image`. This method returns a copy of `image`, rotated the given number of degrees
        counter clockwise around its centre.

        Args:
            image (`PIL.Image.Image` or `np.ndarray` or `torch.Tensor`):
                The image to rotate. If `np.ndarray` or `torch.Tensor`, will be converted to `PIL.Image.Image` before
                rotating.

        Returns:
            image: A rotated `PIL.Image.Image`.
        """
        resample = resample if resample is not None else PIL.Image.NEAREST

        self._ensure_format_supported(image)

        if not isinstance(image, PIL.Image.Image):
            image = self.to_pil_image(image)

        return image.rotate(
            angle, resample=resample, expand=expand, center=center, translate=translate, fillcolor=fillcolor
        )