Spaces:
Runtime error
Runtime error
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib.util | |
import os | |
import platform | |
from argparse import ArgumentParser | |
import huggingface_hub | |
from .. import __version__ as version | |
from ..utils import ( | |
is_accelerate_available, | |
is_flax_available, | |
is_safetensors_available, | |
is_tf_available, | |
is_torch_available, | |
) | |
from . import BaseTransformersCLICommand | |
def info_command_factory(_): | |
return EnvironmentCommand() | |
def download_command_factory(args): | |
return EnvironmentCommand(args.accelerate_config_file) | |
class EnvironmentCommand(BaseTransformersCLICommand): | |
def register_subcommand(parser: ArgumentParser): | |
download_parser = parser.add_parser("env") | |
download_parser.set_defaults(func=info_command_factory) | |
download_parser.add_argument( | |
"--accelerate-config_file", | |
default=None, | |
help="The accelerate config file to use for the default values in the launching script.", | |
) | |
download_parser.set_defaults(func=download_command_factory) | |
def __init__(self, accelerate_config_file, *args) -> None: | |
self._accelerate_config_file = accelerate_config_file | |
def run(self): | |
safetensors_version = "not installed" | |
if is_safetensors_available(): | |
import safetensors | |
safetensors_version = safetensors.__version__ | |
elif importlib.util.find_spec("safetensors") is not None: | |
import safetensors | |
safetensors_version = f"{safetensors.__version__} but is ignored because of PyTorch version too old." | |
accelerate_version = "not installed" | |
accelerate_config = accelerate_config_str = "not found" | |
if is_accelerate_available(): | |
import accelerate | |
from accelerate.commands.config import default_config_file, load_config_from_file | |
accelerate_version = accelerate.__version__ | |
# Get the default from the config file. | |
if self._accelerate_config_file is not None or os.path.isfile(default_config_file): | |
accelerate_config = load_config_from_file(self._accelerate_config_file).to_dict() | |
accelerate_config_str = ( | |
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()]) | |
if isinstance(accelerate_config, dict) | |
else f"\t{accelerate_config}" | |
) | |
pt_version = "not installed" | |
pt_cuda_available = "NA" | |
if is_torch_available(): | |
import torch | |
pt_version = torch.__version__ | |
pt_cuda_available = torch.cuda.is_available() | |
tf_version = "not installed" | |
tf_cuda_available = "NA" | |
if is_tf_available(): | |
import tensorflow as tf | |
tf_version = tf.__version__ | |
try: | |
# deprecated in v2.1 | |
tf_cuda_available = tf.test.is_gpu_available() | |
except AttributeError: | |
# returns list of devices, convert to bool | |
tf_cuda_available = bool(tf.config.list_physical_devices("GPU")) | |
flax_version = "not installed" | |
jax_version = "not installed" | |
jaxlib_version = "not installed" | |
jax_backend = "NA" | |
if is_flax_available(): | |
import flax | |
import jax | |
import jaxlib | |
flax_version = flax.__version__ | |
jax_version = jax.__version__ | |
jaxlib_version = jaxlib.__version__ | |
jax_backend = jax.lib.xla_bridge.get_backend().platform | |
info = { | |
"`transformers` version": version, | |
"Platform": platform.platform(), | |
"Python version": platform.python_version(), | |
"Huggingface_hub version": huggingface_hub.__version__, | |
"Safetensors version": f"{safetensors_version}", | |
"Accelerate version": f"{accelerate_version}", | |
"Accelerate config": f"{accelerate_config_str}", | |
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", | |
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})", | |
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})", | |
"Jax version": f"{jax_version}", | |
"JaxLib version": f"{jaxlib_version}", | |
"Using GPU in script?": "<fill in>", | |
"Using distributed or parallel set-up in script?": "<fill in>", | |
} | |
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n") | |
print(self.format_dict(info)) | |
return info | |
def format_dict(d): | |
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n" | |