Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Tuple | |
from ..utils import cached_property, is_tf_available, logging, requires_backends | |
from .benchmark_args_utils import BenchmarkArguments | |
if is_tf_available(): | |
import tensorflow as tf | |
logger = logging.get_logger(__name__) | |
class TensorFlowBenchmarkArguments(BenchmarkArguments): | |
deprecated_args = [ | |
"no_inference", | |
"no_cuda", | |
"no_tpu", | |
"no_speed", | |
"no_memory", | |
"no_env_print", | |
"no_multi_process", | |
] | |
def __init__(self, **kwargs): | |
""" | |
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be | |
deleted | |
""" | |
for deprecated_arg in self.deprecated_args: | |
if deprecated_arg in kwargs: | |
positive_arg = deprecated_arg[3:] | |
kwargs[positive_arg] = not kwargs.pop(deprecated_arg) | |
logger.warning( | |
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" | |
f" {positive_arg}={kwargs[positive_arg]}" | |
) | |
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name) | |
self.device_idx = kwargs.pop("device_idx", self.device_idx) | |
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode) | |
self.use_xla = kwargs.pop("use_xla", self.use_xla) | |
super().__init__(**kwargs) | |
tpu_name: str = field( | |
default=None, | |
metadata={"help": "Name of TPU"}, | |
) | |
device_idx: int = field( | |
default=0, | |
metadata={"help": "CPU / GPU device index. Defaults to 0."}, | |
) | |
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."}) | |
use_xla: bool = field( | |
default=False, | |
metadata={ | |
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." | |
}, | |
) | |
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: | |
requires_backends(self, ["tf"]) | |
tpu = None | |
if self.tpu: | |
try: | |
if self.tpu_name: | |
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) | |
else: | |
tpu = tf.distribute.cluster_resolver.TPUClusterResolver() | |
except ValueError: | |
tpu = None | |
return tpu | |
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: | |
requires_backends(self, ["tf"]) | |
if self.is_tpu: | |
tf.config.experimental_connect_to_cluster(self._setup_tpu) | |
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu) | |
strategy = tf.distribute.TPUStrategy(self._setup_tpu) | |
else: | |
# currently no multi gpu is allowed | |
if self.is_gpu: | |
# TODO: Currently only single GPU is supported | |
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU") | |
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}") | |
else: | |
tf.config.set_visible_devices([], "GPU") # disable GPU | |
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}") | |
return strategy | |
def is_tpu(self) -> bool: | |
requires_backends(self, ["tf"]) | |
return self._setup_tpu is not None | |
def strategy(self) -> "tf.distribute.Strategy": | |
requires_backends(self, ["tf"]) | |
return self._setup_strategy | |
def gpu_list(self): | |
requires_backends(self, ["tf"]) | |
return tf.config.list_physical_devices("GPU") | |
def n_gpu(self) -> int: | |
requires_backends(self, ["tf"]) | |
if self.cuda: | |
return len(self.gpu_list) | |
return 0 | |
def is_gpu(self) -> bool: | |
return self.n_gpu > 0 | |