Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright Google AI and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for CANINE.""" | |
from typing import Dict, List, Optional | |
from ...tokenization_utils import AddedToken, PreTrainedTokenizer | |
from ...utils import logging | |
logger = logging.get_logger(__name__) | |
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { | |
"nielsr/canine-s": 2048, | |
} | |
# Unicode defines 1,114,112 total “codepoints” | |
UNICODE_VOCAB_SIZE = 1114112 | |
# Below: Constants defining canonical codepoints for special, pseudo-characters. | |
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py | |
PAD = 0 | |
CLS = 0xE000 | |
SEP = 0xE001 | |
BOS = 0xE002 | |
MASK = 0xE003 | |
RESERVED = 0xE004 | |
# Maps special codepoints to human-readable names. | |
SPECIAL_CODEPOINTS: Dict[int, str] = { | |
# Special symbols are represented using codepoints values that are valid, | |
# but designated as "Private Use", meaning that they will never be assigned | |
# characters by the Unicode Consortium, and are thus safe for use here. | |
# | |
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly | |
# excluded and should fail with a hard error. | |
CLS: "[CLS]", | |
SEP: "[SEP]", | |
BOS: "[BOS]", | |
MASK: "[MASK]", | |
PAD: "[PAD]", | |
RESERVED: "[RESERVED]", | |
} | |
# Maps special codepoint human-readable names to their codepoint values. | |
SPECIAL_CODEPOINTS_BY_NAME: Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} | |
class CanineTokenizer(PreTrainedTokenizer): | |
r""" | |
Construct a CANINE tokenizer (i.e. a character splitter). It turns text into a sequence of characters, and then | |
converts each character into its Unicode code point. | |
[`CanineTokenizer`] inherits from [`PreTrainedTokenizer`]. | |
Refer to superclass [`PreTrainedTokenizer`] for usage examples and documentation concerning parameters. | |
Args: | |
model_max_length (`int`, *optional*, defaults to 2048): | |
The maximum sentence length the model accepts. | |
""" | |
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES | |
def __init__( | |
self, | |
bos_token=chr(CLS), | |
eos_token=chr(SEP), | |
sep_token=chr(SEP), | |
cls_token=chr(CLS), | |
pad_token=chr(PAD), | |
mask_token=chr(MASK), | |
add_prefix_space=False, | |
model_max_length=2048, | |
**kwargs, | |
): | |
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token | |
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token | |
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token | |
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token | |
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token | |
# Mask token behave like a normal word, i.e. include the space before it | |
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token | |
# Creates a mapping for looking up the IDs of special symbols. | |
self._special_codepoints: Dict[str, int] = {} | |
for codepoint, name in SPECIAL_CODEPOINTS.items(): | |
self._special_codepoints[name] = codepoint | |
# Creates a mapping for looking up the string forms of special symbol IDs. | |
self._special_codepoint_strings: Dict[int, str] = { | |
codepoint: name for name, codepoint in self._special_codepoints.items() | |
} | |
self._unicode_vocab_size = UNICODE_VOCAB_SIZE | |
self._num_special_tokens = len(self._special_codepoints) | |
super().__init__( | |
bos_token=bos_token, | |
eos_token=eos_token, | |
sep_token=sep_token, | |
cls_token=cls_token, | |
pad_token=pad_token, | |
mask_token=mask_token, | |
add_prefix_space=add_prefix_space, | |
model_max_length=model_max_length, | |
**kwargs, | |
) | |
def vocab_size(self) -> int: | |
return self._unicode_vocab_size | |
def get_vocab(self): | |
vocab = {chr(i): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text: str) -> List[str]: | |
"""Tokenize a string (i.e. perform character splitting).""" | |
return list(text) | |
def _convert_token_to_id(self, token: str) -> int: | |
"""Converts a token (i.e. a Unicode character) in an id (i.e. its integer Unicode code point value).""" | |
try: | |
return ord(token) | |
except TypeError: | |
raise ValueError(f"invalid token: '{token}'") | |
def _convert_id_to_token(self, index: int) -> str: | |
""" | |
Converts a Unicode code point (integer) in a token (str). In case it's a special code point, convert to | |
human-readable format. | |
""" | |
try: | |
if index in SPECIAL_CODEPOINTS: | |
return SPECIAL_CODEPOINTS[index] | |
return chr(index) | |
except TypeError: | |
raise ValueError(f"invalid id: {index}") | |
def convert_tokens_to_string(self, tokens): | |
return "".join(tokens) | |
def build_inputs_with_special_tokens( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | |
adding special tokens. A CANINE sequence has the following format: | |
- single sequence: `[CLS] X [SEP]` | |
- pair of sequences: `[CLS] A [SEP] B [SEP]` | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs to which the special tokens will be added. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
result = cls + token_ids_0 + sep | |
if token_ids_1 is not None: | |
result += token_ids_1 + sep | |
return result | |
def get_special_tokens_mask( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | |
) -> List[int]: | |
""" | |
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` method. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | |
) | |
result = [1] + ([0] * len(token_ids_0)) + [1] | |
if token_ids_1 is not None: | |
result += ([0] * len(token_ids_1)) + [1] | |
return result | |
def create_token_type_ids_from_sequences( | |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | |
) -> List[int]: | |
""" | |
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CANINE | |
sequence pair mask has the following format: | |
``` | |
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | |
| first sequence | second sequence | | |
``` | |
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
Returns: | |
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). | |
""" | |
sep = [self.sep_token_id] | |
cls = [self.cls_token_id] | |
result = len(cls + token_ids_0 + sep) * [0] | |
if token_ids_1 is not None: | |
result += len(token_ids_1 + sep) * [1] | |
return result | |
# CanineTokenizer has no vocab file | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None): | |
return () | |