Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib.util | |
import json | |
import os | |
import time | |
from dataclasses import dataclass | |
from typing import Dict | |
import requests | |
from huggingface_hub import HfFolder, hf_hub_download, list_spaces | |
from ..models.auto import AutoTokenizer | |
from ..utils import is_offline_mode, is_openai_available, is_torch_available, logging | |
from .base import TASK_MAPPING, TOOL_CONFIG_FILE, Tool, load_tool, supports_remote | |
from .prompts import CHAT_MESSAGE_PROMPT, download_prompt | |
from .python_interpreter import evaluate | |
logger = logging.get_logger(__name__) | |
if is_openai_available(): | |
import openai | |
if is_torch_available(): | |
from ..generation import StoppingCriteria, StoppingCriteriaList | |
from ..models.auto import AutoModelForCausalLM | |
else: | |
StoppingCriteria = object | |
_tools_are_initialized = False | |
BASE_PYTHON_TOOLS = { | |
"print": print, | |
"range": range, | |
"float": float, | |
"int": int, | |
"bool": bool, | |
"str": str, | |
} | |
class PreTool: | |
task: str | |
description: str | |
repo_id: str | |
HUGGINGFACE_DEFAULT_TOOLS = {} | |
HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [ | |
"image-transformation", | |
"text-download", | |
"text-to-image", | |
"text-to-video", | |
] | |
def get_remote_tools(organization="huggingface-tools"): | |
if is_offline_mode(): | |
logger.info("You are in offline mode, so remote tools are not available.") | |
return {} | |
spaces = list_spaces(author=organization) | |
tools = {} | |
for space_info in spaces: | |
repo_id = space_info.id | |
resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space") | |
with open(resolved_config_file, encoding="utf-8") as reader: | |
config = json.load(reader) | |
task = repo_id.split("/")[-1] | |
tools[config["name"]] = PreTool(task=task, description=config["description"], repo_id=repo_id) | |
return tools | |
def _setup_default_tools(): | |
global HUGGINGFACE_DEFAULT_TOOLS | |
global _tools_are_initialized | |
if _tools_are_initialized: | |
return | |
main_module = importlib.import_module("transformers") | |
tools_module = main_module.tools | |
remote_tools = get_remote_tools() | |
for task_name, tool_class_name in TASK_MAPPING.items(): | |
tool_class = getattr(tools_module, tool_class_name) | |
description = tool_class.description | |
HUGGINGFACE_DEFAULT_TOOLS[tool_class.name] = PreTool(task=task_name, description=description, repo_id=None) | |
if not is_offline_mode(): | |
for task_name in HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB: | |
found = False | |
for tool_name, tool in remote_tools.items(): | |
if tool.task == task_name: | |
HUGGINGFACE_DEFAULT_TOOLS[tool_name] = tool | |
found = True | |
break | |
if not found: | |
raise ValueError(f"{task_name} is not implemented on the Hub.") | |
_tools_are_initialized = True | |
def resolve_tools(code, toolbox, remote=False, cached_tools=None): | |
if cached_tools is None: | |
resolved_tools = BASE_PYTHON_TOOLS.copy() | |
else: | |
resolved_tools = cached_tools | |
for name, tool in toolbox.items(): | |
if name not in code or name in resolved_tools: | |
continue | |
if isinstance(tool, Tool): | |
resolved_tools[name] = tool | |
else: | |
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id | |
_remote = remote and supports_remote(task_or_repo_id) | |
resolved_tools[name] = load_tool(task_or_repo_id, remote=_remote) | |
return resolved_tools | |
def get_tool_creation_code(code, toolbox, remote=False): | |
code_lines = ["from transformers import load_tool", ""] | |
for name, tool in toolbox.items(): | |
if name not in code or isinstance(tool, Tool): | |
continue | |
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id | |
line = f'{name} = load_tool("{task_or_repo_id}"' | |
if remote: | |
line += ", remote=True" | |
line += ")" | |
code_lines.append(line) | |
return "\n".join(code_lines) + "\n" | |
def clean_code_for_chat(result): | |
lines = result.split("\n") | |
idx = 0 | |
while idx < len(lines) and not lines[idx].lstrip().startswith("```"): | |
idx += 1 | |
explanation = "\n".join(lines[:idx]).strip() | |
if idx == len(lines): | |
return explanation, None | |
idx += 1 | |
start_idx = idx | |
while not lines[idx].lstrip().startswith("```"): | |
idx += 1 | |
code = "\n".join(lines[start_idx:idx]).strip() | |
return explanation, code | |
def clean_code_for_run(result): | |
result = f"I will use the following {result}" | |
explanation, code = result.split("Answer:") | |
explanation = explanation.strip() | |
code = code.strip() | |
code_lines = code.split("\n") | |
if code_lines[0] in ["```", "```py", "```python"]: | |
code_lines = code_lines[1:] | |
if code_lines[-1] == "```": | |
code_lines = code_lines[:-1] | |
code = "\n".join(code_lines) | |
return explanation, code | |
class Agent: | |
""" | |
Base class for all agents which contains the main API methods. | |
Args: | |
chat_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`chat_prompt_template.txt` in this repo in this case. | |
run_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `run` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`run_prompt_template.txt` in this repo in this case. | |
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): | |
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as | |
one of the default tools, that default tool will be overridden. | |
""" | |
def __init__(self, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): | |
_setup_default_tools() | |
agent_name = self.__class__.__name__ | |
self.chat_prompt_template = download_prompt(chat_prompt_template, agent_name, mode="chat") | |
self.run_prompt_template = download_prompt(run_prompt_template, agent_name, mode="run") | |
self._toolbox = HUGGINGFACE_DEFAULT_TOOLS.copy() | |
self.log = print | |
if additional_tools is not None: | |
if isinstance(additional_tools, (list, tuple)): | |
additional_tools = {t.name: t for t in additional_tools} | |
elif not isinstance(additional_tools, dict): | |
additional_tools = {additional_tools.name: additional_tools} | |
replacements = {name: tool for name, tool in additional_tools.items() if name in HUGGINGFACE_DEFAULT_TOOLS} | |
self._toolbox.update(additional_tools) | |
if len(replacements) > 1: | |
names = "\n".join([f"- {n}: {t}" for n, t in replacements.items()]) | |
logger.warning( | |
f"The following tools have been replaced by the ones provided in `additional_tools`:\n{names}." | |
) | |
elif len(replacements) == 1: | |
name = list(replacements.keys())[0] | |
logger.warning(f"{name} has been replaced by {replacements[name]} as provided in `additional_tools`.") | |
self.prepare_for_new_chat() | |
def toolbox(self) -> Dict[str, Tool]: | |
"""Get all tool currently available to the agent""" | |
return self._toolbox | |
def format_prompt(self, task, chat_mode=False): | |
description = "\n".join([f"- {name}: {tool.description}" for name, tool in self.toolbox.items()]) | |
if chat_mode: | |
if self.chat_history is None: | |
prompt = self.chat_prompt_template.replace("<<all_tools>>", description) | |
else: | |
prompt = self.chat_history | |
prompt += CHAT_MESSAGE_PROMPT.replace("<<task>>", task) | |
else: | |
prompt = self.run_prompt_template.replace("<<all_tools>>", description) | |
prompt = prompt.replace("<<prompt>>", task) | |
return prompt | |
def set_stream(self, streamer): | |
""" | |
Set the function use to stream results (which is `print` by default). | |
Args: | |
streamer (`callable`): The function to call when streaming results from the LLM. | |
""" | |
self.log = streamer | |
def chat(self, task, *, return_code=False, remote=False, **kwargs): | |
""" | |
Sends a new request to the agent in a chat. Will use the previous ones in its history. | |
Args: | |
task (`str`): The task to perform | |
return_code (`bool`, *optional*, defaults to `False`): | |
Whether to just return code and not evaluate it. | |
remote (`bool`, *optional*, defaults to `False`): | |
Whether or not to use remote tools (inference endpoints) instead of local ones. | |
kwargs (additional keyword arguments, *optional*): | |
Any keyword argument to send to the agent when evaluating the code. | |
Example: | |
```py | |
from transformers import HfAgent | |
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") | |
agent.chat("Draw me a picture of rivers and lakes") | |
agent.chat("Transform the picture so that there is a rock in there") | |
``` | |
""" | |
prompt = self.format_prompt(task, chat_mode=True) | |
result = self.generate_one(prompt, stop=["Human:", "====="]) | |
self.chat_history = prompt + result.strip() + "\n" | |
explanation, code = clean_code_for_chat(result) | |
self.log(f"==Explanation from the agent==\n{explanation}") | |
if code is not None: | |
self.log(f"\n\n==Code generated by the agent==\n{code}") | |
if not return_code: | |
self.log("\n\n==Result==") | |
self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) | |
self.chat_state.update(kwargs) | |
return evaluate(code, self.cached_tools, self.chat_state, chat_mode=True) | |
else: | |
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) | |
return f"{tool_code}\n{code}" | |
def prepare_for_new_chat(self): | |
""" | |
Clears the history of prior calls to [`~Agent.chat`]. | |
""" | |
self.chat_history = None | |
self.chat_state = {} | |
self.cached_tools = None | |
def run(self, task, *, return_code=False, remote=False, **kwargs): | |
""" | |
Sends a request to the agent. | |
Args: | |
task (`str`): The task to perform | |
return_code (`bool`, *optional*, defaults to `False`): | |
Whether to just return code and not evaluate it. | |
remote (`bool`, *optional*, defaults to `False`): | |
Whether or not to use remote tools (inference endpoints) instead of local ones. | |
kwargs (additional keyword arguments, *optional*): | |
Any keyword argument to send to the agent when evaluating the code. | |
Example: | |
```py | |
from transformers import HfAgent | |
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") | |
agent.run("Draw me a picture of rivers and lakes") | |
``` | |
""" | |
prompt = self.format_prompt(task) | |
result = self.generate_one(prompt, stop=["Task:"]) | |
explanation, code = clean_code_for_run(result) | |
self.log(f"==Explanation from the agent==\n{explanation}") | |
self.log(f"\n\n==Code generated by the agent==\n{code}") | |
if not return_code: | |
self.log("\n\n==Result==") | |
self.cached_tools = resolve_tools(code, self.toolbox, remote=remote, cached_tools=self.cached_tools) | |
return evaluate(code, self.cached_tools, state=kwargs.copy()) | |
else: | |
tool_code = get_tool_creation_code(code, self.toolbox, remote=remote) | |
return f"{tool_code}\n{code}" | |
def generate_one(self, prompt, stop): | |
# This is the method to implement in your custom agent. | |
raise NotImplementedError | |
def generate_many(self, prompts, stop): | |
# Override if you have a way to do batch generation faster than one by one | |
return [self.generate_one(prompt, stop) for prompt in prompts] | |
class OpenAiAgent(Agent): | |
""" | |
Agent that uses the openai API to generate code. | |
<Tip warning={true}> | |
The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like | |
`"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. | |
</Tip> | |
Args: | |
model (`str`, *optional*, defaults to `"text-davinci-003"`): | |
The name of the OpenAI model to use. | |
api_key (`str`, *optional*): | |
The API key to use. If unset, will look for the environment variable `"OPENAI_API_KEY"`. | |
chat_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`chat_prompt_template.txt` in this repo in this case. | |
run_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `run` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`run_prompt_template.txt` in this repo in this case. | |
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): | |
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as | |
one of the default tools, that default tool will be overridden. | |
Example: | |
```py | |
from transformers import OpenAiAgent | |
agent = OpenAiAgent(model="text-davinci-003", api_key=xxx) | |
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") | |
``` | |
""" | |
def __init__( | |
self, | |
model="text-davinci-003", | |
api_key=None, | |
chat_prompt_template=None, | |
run_prompt_template=None, | |
additional_tools=None, | |
): | |
if not is_openai_available(): | |
raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") | |
if api_key is None: | |
api_key = os.environ.get("OPENAI_API_KEY", None) | |
if api_key is None: | |
raise ValueError( | |
"You need an openai key to use `OpenAIAgent`. You can get one here: Get one here " | |
"https://openai.com/api/`. If you have one, set it in your env with `os.environ['OPENAI_API_KEY'] = " | |
"xxx." | |
) | |
else: | |
openai.api_key = api_key | |
self.model = model | |
super().__init__( | |
chat_prompt_template=chat_prompt_template, | |
run_prompt_template=run_prompt_template, | |
additional_tools=additional_tools, | |
) | |
def generate_many(self, prompts, stop): | |
if "gpt" in self.model: | |
return [self._chat_generate(prompt, stop) for prompt in prompts] | |
else: | |
return self._completion_generate(prompts, stop) | |
def generate_one(self, prompt, stop): | |
if "gpt" in self.model: | |
return self._chat_generate(prompt, stop) | |
else: | |
return self._completion_generate([prompt], stop)[0] | |
def _chat_generate(self, prompt, stop): | |
result = openai.ChatCompletion.create( | |
model=self.model, | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0, | |
stop=stop, | |
) | |
return result["choices"][0]["message"]["content"] | |
def _completion_generate(self, prompts, stop): | |
result = openai.Completion.create( | |
model=self.model, | |
prompt=prompts, | |
temperature=0, | |
stop=stop, | |
max_tokens=200, | |
) | |
return [answer["text"] for answer in result["choices"]] | |
class AzureOpenAiAgent(Agent): | |
""" | |
Agent that uses Azure OpenAI to generate code. See the [official | |
documentation](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) to learn how to deploy an openAI | |
model on Azure | |
<Tip warning={true}> | |
The openAI models are used in generation mode, so even for the `chat()` API, it's better to use models like | |
`"text-davinci-003"` over the chat-GPT variant. Proper support for chat-GPT models will come in a next version. | |
</Tip> | |
Args: | |
deployment_id (`str`): | |
The name of the deployed Azure openAI model to use. | |
api_key (`str`, *optional*): | |
The API key to use. If unset, will look for the environment variable `"AZURE_OPENAI_API_KEY"`. | |
resource_name (`str`, *optional*): | |
The name of your Azure OpenAI Resource. If unset, will look for the environment variable | |
`"AZURE_OPENAI_RESOURCE_NAME"`. | |
api_version (`str`, *optional*, default to `"2022-12-01"`): | |
The API version to use for this agent. | |
is_chat_mode (`bool`, *optional*): | |
Whether you are using a completion model or a chat model (see note above, chat models won't be as | |
efficient). Will default to `gpt` being in the `deployment_id` or not. | |
chat_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`chat_prompt_template.txt` in this repo in this case. | |
run_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `run` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`run_prompt_template.txt` in this repo in this case. | |
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): | |
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as | |
one of the default tools, that default tool will be overridden. | |
Example: | |
```py | |
from transformers import AzureOpenAiAgent | |
agent = AzureAiAgent(deployment_id="Davinci-003", api_key=xxx, resource_name=yyy) | |
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") | |
``` | |
""" | |
def __init__( | |
self, | |
deployment_id, | |
api_key=None, | |
resource_name=None, | |
api_version="2022-12-01", | |
is_chat_model=None, | |
chat_prompt_template=None, | |
run_prompt_template=None, | |
additional_tools=None, | |
): | |
if not is_openai_available(): | |
raise ImportError("Using `OpenAiAgent` requires `openai`: `pip install openai`.") | |
self.deployment_id = deployment_id | |
openai.api_type = "azure" | |
if api_key is None: | |
api_key = os.environ.get("AZURE_OPENAI_API_KEY", None) | |
if api_key is None: | |
raise ValueError( | |
"You need an Azure openAI key to use `AzureOpenAIAgent`. If you have one, set it in your env with " | |
"`os.environ['AZURE_OPENAI_API_KEY'] = xxx." | |
) | |
else: | |
openai.api_key = api_key | |
if resource_name is None: | |
resource_name = os.environ.get("AZURE_OPENAI_RESOURCE_NAME", None) | |
if resource_name is None: | |
raise ValueError( | |
"You need a resource_name to use `AzureOpenAIAgent`. If you have one, set it in your env with " | |
"`os.environ['AZURE_OPENAI_RESOURCE_NAME'] = xxx." | |
) | |
else: | |
openai.api_base = f"https://{resource_name}.openai.azure.com" | |
openai.api_version = api_version | |
if is_chat_model is None: | |
is_chat_model = "gpt" in deployment_id.lower() | |
self.is_chat_model = is_chat_model | |
super().__init__( | |
chat_prompt_template=chat_prompt_template, | |
run_prompt_template=run_prompt_template, | |
additional_tools=additional_tools, | |
) | |
def generate_many(self, prompts, stop): | |
if self.is_chat_model: | |
return [self._chat_generate(prompt, stop) for prompt in prompts] | |
else: | |
return self._completion_generate(prompts, stop) | |
def generate_one(self, prompt, stop): | |
if self.is_chat_model: | |
return self._chat_generate(prompt, stop) | |
else: | |
return self._completion_generate([prompt], stop)[0] | |
def _chat_generate(self, prompt, stop): | |
result = openai.ChatCompletion.create( | |
engine=self.deployment_id, | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0, | |
stop=stop, | |
) | |
return result["choices"][0]["message"]["content"] | |
def _completion_generate(self, prompts, stop): | |
result = openai.Completion.create( | |
engine=self.deployment_id, | |
prompt=prompts, | |
temperature=0, | |
stop=stop, | |
max_tokens=200, | |
) | |
return [answer["text"] for answer in result["choices"]] | |
class HfAgent(Agent): | |
""" | |
Agent that uses an inference endpoint to generate code. | |
Args: | |
url_endpoint (`str`): | |
The name of the url endpoint to use. | |
token (`str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when | |
running `huggingface-cli login` (stored in `~/.huggingface`). | |
chat_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`chat_prompt_template.txt` in this repo in this case. | |
run_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `run` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`run_prompt_template.txt` in this repo in this case. | |
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): | |
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as | |
one of the default tools, that default tool will be overridden. | |
Example: | |
```py | |
from transformers import HfAgent | |
agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") | |
agent.run("Is the following `text` (in Spanish) positive or negative?", text="¡Este es un API muy agradable!") | |
``` | |
""" | |
def __init__( | |
self, url_endpoint, token=None, chat_prompt_template=None, run_prompt_template=None, additional_tools=None | |
): | |
self.url_endpoint = url_endpoint | |
if token is None: | |
self.token = f"Bearer {HfFolder().get_token()}" | |
elif token.startswith("Bearer") or token.startswith("Basic"): | |
self.token = token | |
else: | |
self.token = f"Bearer {token}" | |
super().__init__( | |
chat_prompt_template=chat_prompt_template, | |
run_prompt_template=run_prompt_template, | |
additional_tools=additional_tools, | |
) | |
def generate_one(self, prompt, stop): | |
headers = {"Authorization": self.token} | |
inputs = { | |
"inputs": prompt, | |
"parameters": {"max_new_tokens": 200, "return_full_text": False, "stop": stop}, | |
} | |
response = requests.post(self.url_endpoint, json=inputs, headers=headers) | |
if response.status_code == 429: | |
logger.info("Getting rate-limited, waiting a tiny bit before trying again.") | |
time.sleep(1) | |
return self._generate_one(prompt) | |
elif response.status_code != 200: | |
raise ValueError(f"Error {response.status_code}: {response.json()}") | |
result = response.json()[0]["generated_text"] | |
# Inference API returns the stop sequence | |
for stop_seq in stop: | |
if result.endswith(stop_seq): | |
return result[: -len(stop_seq)] | |
return result | |
class LocalAgent(Agent): | |
""" | |
Agent that uses a local model and tokenizer to generate code. | |
Args: | |
model ([`PreTrainedModel`]): | |
The model to use for the agent. | |
tokenizer ([`PreTrainedTokenizer`]): | |
The tokenizer to use for the agent. | |
chat_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `chat` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`chat_prompt_template.txt` in this repo in this case. | |
run_prompt_template (`str`, *optional*): | |
Pass along your own prompt if you want to override the default template for the `run` method. Can be the | |
actual prompt template or a repo ID (on the Hugging Face Hub). The prompt should be in a file named | |
`run_prompt_template.txt` in this repo in this case. | |
additional_tools ([`Tool`], list of tools or dictionary with tool values, *optional*): | |
Any additional tools to include on top of the default ones. If you pass along a tool with the same name as | |
one of the default tools, that default tool will be overridden. | |
Example: | |
```py | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, LocalAgent | |
checkpoint = "bigcode/starcoder" | |
model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
agent = LocalAgent(model, tokenizer) | |
agent.run("Draw me a picture of rivers and lakes.") | |
``` | |
""" | |
def __init__(self, model, tokenizer, chat_prompt_template=None, run_prompt_template=None, additional_tools=None): | |
self.model = model | |
self.tokenizer = tokenizer | |
super().__init__( | |
chat_prompt_template=chat_prompt_template, | |
run_prompt_template=run_prompt_template, | |
additional_tools=additional_tools, | |
) | |
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): | |
""" | |
Convenience method to build a `LocalAgent` from a pretrained checkpoint. | |
Args: | |
pretrained_model_name_or_path (`str` or `os.PathLike`): | |
The name of a repo on the Hub or a local path to a folder containing both model and tokenizer. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Keyword arguments passed along to [`~PreTrainedModel.from_pretrained`]. | |
Example: | |
```py | |
import torch | |
from transformers import LocalAgent | |
agent = LocalAgent.from_pretrained("bigcode/starcoder", device_map="auto", torch_dtype=torch.bfloat16) | |
agent.run("Draw me a picture of rivers and lakes.") | |
``` | |
""" | |
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
return cls(model, tokenizer) | |
def _model_device(self): | |
if hasattr(self.model, "hf_device_map"): | |
return list(self.model.hf_device_map.values())[0] | |
for param in self.model.parameters(): | |
return param.device | |
def generate_one(self, prompt, stop): | |
encoded_inputs = self.tokenizer(prompt, return_tensors="pt").to(self._model_device) | |
src_len = encoded_inputs["input_ids"].shape[1] | |
stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(stop, self.tokenizer)]) | |
outputs = self.model.generate( | |
encoded_inputs["input_ids"], max_new_tokens=200, stopping_criteria=stopping_criteria | |
) | |
result = self.tokenizer.decode(outputs[0].tolist()[src_len:]) | |
# Inference API returns the stop sequence | |
for stop_seq in stop: | |
if result.endswith(stop_seq): | |
result = result[: -len(stop_seq)] | |
return result | |
class StopSequenceCriteria(StoppingCriteria): | |
""" | |
This class can be used to stop generation whenever a sequence of tokens is encountered. | |
Args: | |
stop_sequences (`str` or `List[str]`): | |
The sequence (or list of sequences) on which to stop execution. | |
tokenizer: | |
The tokenizer used to decode the model outputs. | |
""" | |
def __init__(self, stop_sequences, tokenizer): | |
if isinstance(stop_sequences, str): | |
stop_sequences = [stop_sequences] | |
self.stop_sequences = stop_sequences | |
self.tokenizer = tokenizer | |
def __call__(self, input_ids, scores, **kwargs) -> bool: | |
decoded_output = self.tokenizer.decode(input_ids.tolist()[0]) | |
return any(decoded_output.endswith(stop_sequence) for stop_sequence in self.stop_sequences) | |