liuyizhang
add transformers_4_35_0
1ce5e18
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for CPMAnt."""
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"openbmb/cpm-ant-10b": "https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"openbmb/cpm-ant-10b": 1024,
}
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
class WordpieceTokenizer(object):
def __init__(self, vocab, unk_token="<unk>", max_input_chars_per_word=200):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, token):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
return [self.unk_token]
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token)
start += 1
else:
sub_tokens.append(cur_substr)
start = end
return sub_tokens
class CpmAntTokenizer(PreTrainedTokenizer):
"""
Construct a CPMAnt tokenizer. Based on byte-level Byte-Pair-Encoding.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bod_token (`str`, *optional*, defaults to `"<d>"`):
The beginning of document token.
eod_token (`str`, *optional*, defaults to `"</d>"`):
The end of document token.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token.
line_token (`str`, *optional*, defaults to `"</n>"`):
The line token.
space_token (`str`, *optional*, defaults to `"</_>"`):
The space token.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
add_prefix_space = False
def __init__(
self,
vocab_file,
bod_token="<d>",
eod_token="</d>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
unk_token="<unk>",
line_token="</n>",
space_token="</_>",
padding_side="left",
**kwargs,
):
requires_backends(self, ["jieba"])
self.bod_token = bod_token
self.eod_token = eod_token
self.encoder = load_vocab(vocab_file)
self.encoder[" "] = self.encoder[space_token]
self.encoder["\n"] = self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
self.decoder = {v: k for k, v in self.encoder.items()}
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=unk_token)
super().__init__(
bod_token=bod_token,
eod_token=eod_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
unk_token=unk_token,
line_token=line_token,
space_token=space_token,
padding_side=padding_side,
**kwargs,
)
@property
def bod_token_id(self):
return self.encoder[self.bod_token]
@property
def eod_token_id(self):
return self.encoder[self.eod_token]
@property
def newline_id(self):
return self.encoder["\n"]
@property
def vocab_size(self) -> int:
return len(self.encoder)
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
def _tokenize(self, text):
"""Tokenize a string."""
output_tokens = []
for x in jieba.cut(text, cut_all=False):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(x))
return output_tokens
def _decode(self, token_ids, **kwargs):
"""Decode ids into a string."""
token_ids = [i for i in token_ids if i >= 0]
token_ids = [
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(token_ids, **kwargs)
def check(self, token):
return token in self.encoder
def convert_tokens_to_string(self, tokens: List[str]) -> str:
return "".join(tokens)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index, self.unk_token)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
index = 0
if " " in self.encoder:
self.encoder["</_>"] = self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
self.encoder["</n>"] = self.encoder["\n"]
del self.encoder["\n"]
self.encoder = collections.OrderedDict(sorted(self.encoder.items(), key=lambda x: x[1]))
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0: List[int], token_ids_1: List[int] = None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CPMAnt sequence has the following format:
- single sequence: `[BOS] Sequence`.
Args:
token_ids_0 (`List[int]`): The first tokenized sequence that special tokens will be added.
token_ids_1 (`List[int]`): The optional second tokenized sequence that special tokens will be added.
Returns:
`List[int]`: The model input with special tokens.
"""
if token_ids_1 is None:
return [self.bos_token_id] + token_ids_0
return [self.bos_token_id] + token_ids_0 + [self.bos_token_id] + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`): List of IDs.
token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
return [1] + ([0] * len(token_ids_0))