Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Hub utilities: utilities related to download and cache models | |
""" | |
import json | |
import os | |
import re | |
import shutil | |
import sys | |
import tempfile | |
import traceback | |
import warnings | |
from concurrent import futures | |
from pathlib import Path | |
from typing import Dict, List, Optional, Tuple, Union | |
from urllib.parse import urlparse | |
from uuid import uuid4 | |
import huggingface_hub | |
import requests | |
from huggingface_hub import ( | |
CommitOperationAdd, | |
create_branch, | |
create_commit, | |
create_repo, | |
get_hf_file_metadata, | |
hf_hub_download, | |
hf_hub_url, | |
) | |
from huggingface_hub.file_download import REGEX_COMMIT_HASH, http_get | |
from huggingface_hub.utils import ( | |
EntryNotFoundError, | |
GatedRepoError, | |
LocalEntryNotFoundError, | |
RepositoryNotFoundError, | |
RevisionNotFoundError, | |
build_hf_headers, | |
hf_raise_for_status, | |
) | |
from requests.exceptions import HTTPError | |
from . import __version__, logging | |
from .generic import working_or_temp_dir | |
from .import_utils import ( | |
ENV_VARS_TRUE_VALUES, | |
_tf_version, | |
_torch_version, | |
is_tf_available, | |
is_torch_available, | |
is_training_run_on_sagemaker, | |
) | |
from .logging import tqdm | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
_is_offline_mode = True if os.environ.get("TRANSFORMERS_OFFLINE", "0").upper() in ENV_VARS_TRUE_VALUES else False | |
def is_offline_mode(): | |
return _is_offline_mode | |
torch_cache_home = os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) | |
old_default_cache_path = os.path.join(torch_cache_home, "transformers") | |
# New default cache, shared with the Datasets library | |
hf_cache_home = os.path.expanduser( | |
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) | |
) | |
default_cache_path = os.path.join(hf_cache_home, "hub") | |
# Onetime move from the old location to the new one if no ENV variable has been set. | |
if ( | |
os.path.isdir(old_default_cache_path) | |
and not os.path.isdir(default_cache_path) | |
and "PYTORCH_PRETRAINED_BERT_CACHE" not in os.environ | |
and "PYTORCH_TRANSFORMERS_CACHE" not in os.environ | |
and "TRANSFORMERS_CACHE" not in os.environ | |
): | |
logger.warning( | |
"In Transformers v4.0.0, the default path to cache downloaded models changed from" | |
" '~/.cache/torch/transformers' to '~/.cache/huggingface/transformers'. Since you don't seem to have" | |
" overridden and '~/.cache/torch/transformers' is a directory that exists, we're moving it to" | |
" '~/.cache/huggingface/transformers' to avoid redownloading models you have already in the cache. You should" | |
" only see this message once." | |
) | |
shutil.move(old_default_cache_path, default_cache_path) | |
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) | |
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) | |
HUGGINGFACE_HUB_CACHE = os.getenv("HUGGINGFACE_HUB_CACHE", PYTORCH_TRANSFORMERS_CACHE) | |
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", HUGGINGFACE_HUB_CACHE) | |
HF_MODULES_CACHE = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) | |
TRANSFORMERS_DYNAMIC_MODULE_NAME = "transformers_modules" | |
SESSION_ID = uuid4().hex | |
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", False) in ENV_VARS_TRUE_VALUES | |
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert" | |
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co" | |
_staging_mode = os.environ.get("HUGGINGFACE_CO_STAGING", "NO").upper() in ENV_VARS_TRUE_VALUES | |
_default_endpoint = "https://hub-ci.huggingface.co" if _staging_mode else "https://huggingface.co" | |
HUGGINGFACE_CO_RESOLVE_ENDPOINT = _default_endpoint | |
if os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) is not None: | |
warnings.warn( | |
"Using the environment variable `HUGGINGFACE_CO_RESOLVE_ENDPOINT` is deprecated and will be removed in " | |
"Transformers v5. Use `HF_ENDPOINT` instead.", | |
FutureWarning, | |
) | |
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HUGGINGFACE_CO_RESOLVE_ENDPOINT", None) | |
HUGGINGFACE_CO_RESOLVE_ENDPOINT = os.environ.get("HF_ENDPOINT", HUGGINGFACE_CO_RESOLVE_ENDPOINT) | |
HUGGINGFACE_CO_PREFIX = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/{model_id}/resolve/{revision}/{filename}" | |
HUGGINGFACE_CO_EXAMPLES_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/examples" | |
# Return value when trying to load a file from cache but the file does not exist in the distant repo. | |
_CACHED_NO_EXIST = object() | |
def is_remote_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def get_cached_models(cache_dir: Union[str, Path] = None) -> List[Tuple]: | |
""" | |
Returns a list of tuples representing model binaries that are cached locally. Each tuple has shape `(model_url, | |
etag, size_MB)`. Filenames in `cache_dir` are use to get the metadata for each model, only urls ending with *.bin* | |
are added. | |
Args: | |
cache_dir (`Union[str, Path]`, *optional*): | |
The cache directory to search for models within. Will default to the transformers cache if unset. | |
Returns: | |
List[Tuple]: List of tuples each with shape `(model_url, etag, size_MB)` | |
""" | |
if cache_dir is None: | |
cache_dir = TRANSFORMERS_CACHE | |
elif isinstance(cache_dir, Path): | |
cache_dir = str(cache_dir) | |
if not os.path.isdir(cache_dir): | |
return [] | |
cached_models = [] | |
for file in os.listdir(cache_dir): | |
if file.endswith(".json"): | |
meta_path = os.path.join(cache_dir, file) | |
with open(meta_path, encoding="utf-8") as meta_file: | |
metadata = json.load(meta_file) | |
url = metadata["url"] | |
etag = metadata["etag"] | |
if url.endswith(".bin"): | |
size_MB = os.path.getsize(meta_path.strip(".json")) / 1e6 | |
cached_models.append((url, etag, size_MB)) | |
return cached_models | |
def define_sagemaker_information(): | |
try: | |
instance_data = requests.get(os.environ["ECS_CONTAINER_METADATA_URI"]).json() | |
dlc_container_used = instance_data["Image"] | |
dlc_tag = instance_data["Image"].split(":")[1] | |
except Exception: | |
dlc_container_used = None | |
dlc_tag = None | |
sagemaker_params = json.loads(os.getenv("SM_FRAMEWORK_PARAMS", "{}")) | |
runs_distributed_training = True if "sagemaker_distributed_dataparallel_enabled" in sagemaker_params else False | |
account_id = os.getenv("TRAINING_JOB_ARN").split(":")[4] if "TRAINING_JOB_ARN" in os.environ else None | |
sagemaker_object = { | |
"sm_framework": os.getenv("SM_FRAMEWORK_MODULE", None), | |
"sm_region": os.getenv("AWS_REGION", None), | |
"sm_number_gpu": os.getenv("SM_NUM_GPUS", 0), | |
"sm_number_cpu": os.getenv("SM_NUM_CPUS", 0), | |
"sm_distributed_training": runs_distributed_training, | |
"sm_deep_learning_container": dlc_container_used, | |
"sm_deep_learning_container_tag": dlc_tag, | |
"sm_account_id": account_id, | |
} | |
return sagemaker_object | |
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: | |
""" | |
Formats a user-agent string with basic info about a request. | |
""" | |
ua = f"transformers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" | |
if is_torch_available(): | |
ua += f"; torch/{_torch_version}" | |
if is_tf_available(): | |
ua += f"; tensorflow/{_tf_version}" | |
if DISABLE_TELEMETRY: | |
return ua + "; telemetry/off" | |
if is_training_run_on_sagemaker(): | |
ua += "; " + "; ".join(f"{k}/{v}" for k, v in define_sagemaker_information().items()) | |
# CI will set this value to True | |
if os.environ.get("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: | |
ua += "; is_ci/true" | |
if isinstance(user_agent, dict): | |
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) | |
elif isinstance(user_agent, str): | |
ua += "; " + user_agent | |
return ua | |
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str]): | |
""" | |
Extracts the commit hash from a resolved filename toward a cache file. | |
""" | |
if resolved_file is None or commit_hash is not None: | |
return commit_hash | |
resolved_file = str(Path(resolved_file).as_posix()) | |
search = re.search(r"snapshots/([^/]+)/", resolved_file) | |
if search is None: | |
return None | |
commit_hash = search.groups()[0] | |
return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None | |
def try_to_load_from_cache( | |
repo_id: str, | |
filename: str, | |
cache_dir: Union[str, Path, None] = None, | |
revision: Optional[str] = None, | |
repo_type: Optional[str] = None, | |
) -> Optional[str]: | |
""" | |
Explores the cache to return the latest cached file for a given revision if found. | |
This function will not raise any exception if the file in not cached. | |
Args: | |
cache_dir (`str` or `os.PathLike`): | |
The folder where the cached files lie. | |
repo_id (`str`): | |
The ID of the repo on huggingface.co. | |
filename (`str`): | |
The filename to look for inside `repo_id`. | |
revision (`str`, *optional*): | |
The specific model version to use. Will default to `"main"` if it's not provided and no `commit_hash` is | |
provided either. | |
repo_type (`str`, *optional*): | |
The type of the repo. | |
Returns: | |
`Optional[str]` or `_CACHED_NO_EXIST`: | |
Will return `None` if the file was not cached. Otherwise: | |
- The exact path to the cached file if it's found in the cache | |
- A special value `_CACHED_NO_EXIST` if the file does not exist at the given commit hash and this fact was | |
cached. | |
""" | |
if revision is None: | |
revision = "main" | |
if cache_dir is None: | |
cache_dir = TRANSFORMERS_CACHE | |
object_id = repo_id.replace("/", "--") | |
if repo_type is None: | |
repo_type = "model" | |
repo_cache = os.path.join(cache_dir, f"{repo_type}s--{object_id}") | |
if not os.path.isdir(repo_cache): | |
# No cache for this model | |
return None | |
for subfolder in ["refs", "snapshots"]: | |
if not os.path.isdir(os.path.join(repo_cache, subfolder)): | |
return None | |
# Resolve refs (for instance to convert main to the associated commit sha) | |
cached_refs = os.listdir(os.path.join(repo_cache, "refs")) | |
if revision in cached_refs: | |
with open(os.path.join(repo_cache, "refs", revision)) as f: | |
revision = f.read() | |
if os.path.isfile(os.path.join(repo_cache, ".no_exist", revision, filename)): | |
return _CACHED_NO_EXIST | |
cached_shas = os.listdir(os.path.join(repo_cache, "snapshots")) | |
if revision not in cached_shas: | |
# No cache for this revision and we won't try to return a random revision | |
return None | |
cached_file = os.path.join(repo_cache, "snapshots", revision, filename) | |
return cached_file if os.path.isfile(cached_file) else None | |
def cached_file( | |
path_or_repo_id: Union[str, os.PathLike], | |
filename: str, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
resume_download: bool = False, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
revision: Optional[str] = None, | |
local_files_only: bool = False, | |
subfolder: str = "", | |
repo_type: Optional[str] = None, | |
user_agent: Optional[Union[str, Dict[str, str]]] = None, | |
_raise_exceptions_for_missing_entries: bool = True, | |
_raise_exceptions_for_connection_errors: bool = True, | |
_commit_hash: Optional[str] = None, | |
**deprecated_kwargs, | |
): | |
""" | |
Tries to locate a file in a local folder and repo, downloads and cache it if necessary. | |
Args: | |
path_or_repo_id (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a model repo on huggingface.co. | |
- a path to a *directory* potentially containing the file. | |
filename (`str`): | |
The name of the file to locate in `path_or_repo`. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, will only try to load the tokenizer configuration from local files. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
repo_type (`str`, *optional*): | |
Specify the repo type (useful when downloading from a space for instance). | |
<Tip> | |
Passing `token=True` is required when you want to use a private model. | |
</Tip> | |
Returns: | |
`Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo). | |
Examples: | |
```python | |
# Download a model weight from the Hub and cache it. | |
model_weights_file = cached_file("bert-base-uncased", "pytorch_model.bin") | |
```""" | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
# Private arguments | |
# _raise_exceptions_for_missing_entries: if False, do not raise an exception for missing entries but return | |
# None. | |
# _raise_exceptions_for_connection_errors: if False, do not raise an exception for connection errors but return | |
# None. | |
# _commit_hash: passed when we are chaining several calls to various files (e.g. when loading a tokenizer or | |
# a pipeline). If files are cached for this commit hash, avoid calls to head and get from the cache. | |
if is_offline_mode() and not local_files_only: | |
logger.info("Offline mode: forcing local_files_only=True") | |
local_files_only = True | |
if subfolder is None: | |
subfolder = "" | |
path_or_repo_id = str(path_or_repo_id) | |
full_filename = os.path.join(subfolder, filename) | |
if os.path.isdir(path_or_repo_id): | |
resolved_file = os.path.join(os.path.join(path_or_repo_id, subfolder), filename) | |
if not os.path.isfile(resolved_file): | |
if _raise_exceptions_for_missing_entries: | |
raise EnvironmentError( | |
f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " | |
f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." | |
) | |
else: | |
return None | |
return resolved_file | |
if cache_dir is None: | |
cache_dir = TRANSFORMERS_CACHE | |
if isinstance(cache_dir, Path): | |
cache_dir = str(cache_dir) | |
if _commit_hash is not None and not force_download: | |
# If the file is cached under that commit hash, we return it directly. | |
resolved_file = try_to_load_from_cache( | |
path_or_repo_id, full_filename, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type | |
) | |
if resolved_file is not None: | |
if resolved_file is not _CACHED_NO_EXIST: | |
return resolved_file | |
elif not _raise_exceptions_for_missing_entries: | |
return None | |
else: | |
raise EnvironmentError(f"Could not locate {full_filename} inside {path_or_repo_id}.") | |
user_agent = http_user_agent(user_agent) | |
try: | |
# Load from URL or cache if already cached | |
resolved_file = hf_hub_download( | |
path_or_repo_id, | |
filename, | |
subfolder=None if len(subfolder) == 0 else subfolder, | |
repo_type=repo_type, | |
revision=revision, | |
cache_dir=cache_dir, | |
user_agent=user_agent, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
token=token, | |
local_files_only=local_files_only, | |
) | |
except GatedRepoError as e: | |
raise EnvironmentError( | |
"You are trying to access a gated repo.\nMake sure to request access at " | |
f"https://huggingface.co/{path_or_repo_id} and pass a token having permission to this repo either " | |
"by logging in with `huggingface-cli login` or by passing `token=<your_token>`." | |
) from e | |
except RepositoryNotFoundError as e: | |
raise EnvironmentError( | |
f"{path_or_repo_id} is not a local folder and is not a valid model identifier " | |
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a token " | |
"having permission to this repo either by logging in with `huggingface-cli login` or by passing " | |
"`token=<your_token>`" | |
) from e | |
except RevisionNotFoundError as e: | |
raise EnvironmentError( | |
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists " | |
"for this model name. Check the model page at " | |
f"'https://huggingface.co/{path_or_repo_id}' for available revisions." | |
) from e | |
except LocalEntryNotFoundError as e: | |
# We try to see if we have a cached version (not up to date): | |
resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) | |
if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: | |
return resolved_file | |
if not _raise_exceptions_for_missing_entries or not _raise_exceptions_for_connection_errors: | |
return None | |
raise EnvironmentError( | |
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this file, couldn't find it in the" | |
f" cached files and it looks like {path_or_repo_id} is not the path to a directory containing a file named" | |
f" {full_filename}.\nCheckout your internet connection or see how to run the library in offline mode at" | |
" 'https://huggingface.co/docs/transformers/installation#offline-mode'." | |
) from e | |
except EntryNotFoundError as e: | |
if not _raise_exceptions_for_missing_entries: | |
return None | |
if revision is None: | |
revision = "main" | |
raise EnvironmentError( | |
f"{path_or_repo_id} does not appear to have a file named {full_filename}. Checkout " | |
f"'https://huggingface.co/{path_or_repo_id}/{revision}' for available files." | |
) from e | |
except HTTPError as err: | |
# First we try to see if we have a cached version (not up to date): | |
resolved_file = try_to_load_from_cache(path_or_repo_id, full_filename, cache_dir=cache_dir, revision=revision) | |
if resolved_file is not None and resolved_file != _CACHED_NO_EXIST: | |
return resolved_file | |
if not _raise_exceptions_for_connection_errors: | |
return None | |
raise EnvironmentError(f"There was a specific connection error when trying to load {path_or_repo_id}:\n{err}") | |
return resolved_file | |
def get_file_from_repo( | |
path_or_repo: Union[str, os.PathLike], | |
filename: str, | |
cache_dir: Optional[Union[str, os.PathLike]] = None, | |
force_download: bool = False, | |
resume_download: bool = False, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
revision: Optional[str] = None, | |
local_files_only: bool = False, | |
subfolder: str = "", | |
**deprecated_kwargs, | |
): | |
""" | |
Tries to locate a file in a local folder and repo, downloads and cache it if necessary. | |
Args: | |
path_or_repo (`str` or `os.PathLike`): | |
This can be either: | |
- a string, the *model id* of a model repo on huggingface.co. | |
- a path to a *directory* potentially containing the file. | |
filename (`str`): | |
The name of the file to locate in `path_or_repo`. | |
cache_dir (`str` or `os.PathLike`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
If `True`, will only try to load the tokenizer configuration from local files. | |
subfolder (`str`, *optional*, defaults to `""`): | |
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can | |
specify the folder name here. | |
<Tip> | |
Passing `token=True` is required when you want to use a private model. | |
</Tip> | |
Returns: | |
`Optional[str]`: Returns the resolved file (to the cache folder if downloaded from a repo) or `None` if the | |
file does not exist. | |
Examples: | |
```python | |
# Download a tokenizer configuration from huggingface.co and cache. | |
tokenizer_config = get_file_from_repo("bert-base-uncased", "tokenizer_config.json") | |
# This model does not have a tokenizer config so the result will be None. | |
tokenizer_config = get_file_from_repo("xlm-roberta-base", "tokenizer_config.json") | |
```""" | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
return cached_file( | |
path_or_repo_id=path_or_repo, | |
filename=filename, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
token=token, | |
revision=revision, | |
local_files_only=local_files_only, | |
subfolder=subfolder, | |
_raise_exceptions_for_missing_entries=False, | |
_raise_exceptions_for_connection_errors=False, | |
) | |
def download_url(url, proxies=None): | |
""" | |
Downloads a given url in a temporary file. This function is not safe to use in multiple processes. Its only use is | |
for deprecated behavior allowing to download config/models with a single url instead of using the Hub. | |
Args: | |
url (`str`): The url of the file to download. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
Returns: | |
`str`: The location of the temporary file where the url was downloaded. | |
""" | |
warnings.warn( | |
f"Using `from_pretrained` with the url of a file (here {url}) is deprecated and won't be possible anymore in" | |
" v5 of Transformers. You should host your file on the Hub (hf.co) instead and use the repository ID. Note" | |
" that this is not compatible with the caching system (your file will be downloaded at each execution) or" | |
" multiple processes (each process will download the file in a different temporary file)." | |
) | |
tmp_file = tempfile.mkstemp()[1] | |
with open(tmp_file, "wb") as f: | |
http_get(url, f, proxies=proxies) | |
return tmp_file | |
def has_file( | |
path_or_repo: Union[str, os.PathLike], | |
filename: str, | |
revision: Optional[str] = None, | |
proxies: Optional[Dict[str, str]] = None, | |
token: Optional[Union[bool, str]] = None, | |
**deprecated_kwargs, | |
): | |
""" | |
Checks if a repo contains a given file without downloading it. Works for remote repos and local folders. | |
<Tip warning={false}> | |
This function will raise an error if the repository `path_or_repo` is not valid or if `revision` does not exist for | |
this repo, but will return False for regular connection errors. | |
</Tip> | |
""" | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
if os.path.isdir(path_or_repo): | |
return os.path.isfile(os.path.join(path_or_repo, filename)) | |
url = hf_hub_url(path_or_repo, filename=filename, revision=revision) | |
headers = build_hf_headers(token=token, user_agent=http_user_agent()) | |
r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=10) | |
try: | |
hf_raise_for_status(r) | |
return True | |
except GatedRepoError as e: | |
logger.error(e) | |
raise EnvironmentError( | |
f"{path_or_repo} is a gated repository. Make sure to request access at " | |
f"https://huggingface.co/{path_or_repo} and pass a token having permission to this repo either by " | |
"logging in with `huggingface-cli login` or by passing `token=<your_token>`." | |
) from e | |
except RepositoryNotFoundError as e: | |
logger.error(e) | |
raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.") | |
except RevisionNotFoundError as e: | |
logger.error(e) | |
raise EnvironmentError( | |
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this " | |
f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions." | |
) | |
except requests.HTTPError: | |
# We return false for EntryNotFoundError (logical) as well as any connection error. | |
return False | |
class PushToHubMixin: | |
""" | |
A Mixin containing the functionality to push a model or tokenizer to the hub. | |
""" | |
def _create_repo( | |
self, | |
repo_id: str, | |
private: Optional[bool] = None, | |
token: Optional[Union[bool, str]] = None, | |
repo_url: Optional[str] = None, | |
organization: Optional[str] = None, | |
) -> str: | |
""" | |
Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves | |
the token. | |
""" | |
if repo_url is not None: | |
warnings.warn( | |
"The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " | |
"instead." | |
) | |
if repo_id is not None: | |
raise ValueError( | |
"`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." | |
) | |
repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") | |
if organization is not None: | |
warnings.warn( | |
"The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " | |
"organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." | |
) | |
if not repo_id.startswith(organization): | |
if "/" in repo_id: | |
repo_id = repo_id.split("/")[-1] | |
repo_id = f"{organization}/{repo_id}" | |
url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) | |
return url.repo_id | |
def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): | |
""" | |
Returns the list of files with their last modification timestamp. | |
""" | |
return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} | |
def _upload_modified_files( | |
self, | |
working_dir: Union[str, os.PathLike], | |
repo_id: str, | |
files_timestamps: Dict[str, float], | |
commit_message: Optional[str] = None, | |
token: Optional[Union[bool, str]] = None, | |
create_pr: bool = False, | |
revision: str = None, | |
): | |
""" | |
Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. | |
""" | |
if commit_message is None: | |
if "Model" in self.__class__.__name__: | |
commit_message = "Upload model" | |
elif "Config" in self.__class__.__name__: | |
commit_message = "Upload config" | |
elif "Tokenizer" in self.__class__.__name__: | |
commit_message = "Upload tokenizer" | |
elif "FeatureExtractor" in self.__class__.__name__: | |
commit_message = "Upload feature extractor" | |
elif "Processor" in self.__class__.__name__: | |
commit_message = "Upload processor" | |
else: | |
commit_message = f"Upload {self.__class__.__name__}" | |
modified_files = [ | |
f | |
for f in os.listdir(working_dir) | |
if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] | |
] | |
# filter for actual files + folders at the root level | |
modified_files = [ | |
f | |
for f in modified_files | |
if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) | |
] | |
operations = [] | |
# upload standalone files | |
for file in modified_files: | |
if os.path.isdir(os.path.join(working_dir, file)): | |
# go over individual files of folder | |
for f in os.listdir(os.path.join(working_dir, file)): | |
operations.append( | |
CommitOperationAdd( | |
path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) | |
) | |
) | |
else: | |
operations.append( | |
CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) | |
) | |
if revision is not None: | |
create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) | |
logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") | |
return create_commit( | |
repo_id=repo_id, | |
operations=operations, | |
commit_message=commit_message, | |
token=token, | |
create_pr=create_pr, | |
revision=revision, | |
) | |
def push_to_hub( | |
self, | |
repo_id: str, | |
use_temp_dir: Optional[bool] = None, | |
commit_message: Optional[str] = None, | |
private: Optional[bool] = None, | |
token: Optional[Union[bool, str]] = None, | |
max_shard_size: Optional[Union[int, str]] = "10GB", | |
create_pr: bool = False, | |
safe_serialization: bool = False, | |
revision: str = None, | |
**deprecated_kwargs, | |
) -> str: | |
""" | |
Upload the {object_files} to the 🤗 Model Hub. | |
Parameters: | |
repo_id (`str`): | |
The name of the repository you want to push your {object} to. It should contain your organization name | |
when pushing to a given organization. | |
use_temp_dir (`bool`, *optional*): | |
Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. | |
Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. | |
commit_message (`str`, *optional*): | |
Message to commit while pushing. Will default to `"Upload {object}"`. | |
private (`bool`, *optional*): | |
Whether or not the repository created should be private. | |
token (`bool` or `str`, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` | |
is not specified. | |
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`): | |
Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard | |
will then be each of size lower than this size. If expressed as a string, needs to be digits followed | |
by a unit (like `"5MB"`). | |
create_pr (`bool`, *optional*, defaults to `False`): | |
Whether or not to create a PR with the uploaded files or directly commit. | |
safe_serialization (`bool`, *optional*, defaults to `False`): | |
Whether or not to convert the model weights in safetensors format for safer serialization. | |
revision (`str`, *optional*): | |
Branch to push the uploaded files to. | |
Examples: | |
```python | |
from transformers import {object_class} | |
{object} = {object_class}.from_pretrained("bert-base-cased") | |
# Push the {object} to your namespace with the name "my-finetuned-bert". | |
{object}.push_to_hub("my-finetuned-bert") | |
# Push the {object} to an organization with the name "my-finetuned-bert". | |
{object}.push_to_hub("huggingface/my-finetuned-bert") | |
``` | |
""" | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError( | |
"`token` and `use_auth_token` are both specified. Please set only the argument `token`." | |
) | |
token = use_auth_token | |
repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) | |
if repo_path_or_name is not None: | |
# Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer | |
# repo_id from the folder path, if it exists. | |
warnings.warn( | |
"The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " | |
"`repo_id` instead.", | |
FutureWarning, | |
) | |
if repo_id is not None: | |
raise ValueError( | |
"`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." | |
) | |
if os.path.isdir(repo_path_or_name): | |
# repo_path: infer repo_id from the path | |
repo_id = repo_id.split(os.path.sep)[-1] | |
working_dir = repo_id | |
else: | |
# repo_name: use it as repo_id | |
repo_id = repo_path_or_name | |
working_dir = repo_id.split("/")[-1] | |
else: | |
# Repo_id is passed correctly: infer working_dir from it | |
working_dir = repo_id.split("/")[-1] | |
# Deprecation warning will be sent after for repo_url and organization | |
repo_url = deprecated_kwargs.pop("repo_url", None) | |
organization = deprecated_kwargs.pop("organization", None) | |
repo_id = self._create_repo( | |
repo_id, private=private, token=token, repo_url=repo_url, organization=organization | |
) | |
if use_temp_dir is None: | |
use_temp_dir = not os.path.isdir(working_dir) | |
with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: | |
files_timestamps = self._get_files_timestamps(work_dir) | |
# Save all files. | |
self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) | |
return self._upload_modified_files( | |
work_dir, | |
repo_id, | |
files_timestamps, | |
commit_message=commit_message, | |
token=token, | |
create_pr=create_pr, | |
revision=revision, | |
) | |
def send_example_telemetry(example_name, *example_args, framework="pytorch"): | |
""" | |
Sends telemetry that helps tracking the examples use. | |
Args: | |
example_name (`str`): The name of the example. | |
*example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only | |
try to extract the model and dataset name from those. Nothing else is tracked. | |
framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example. | |
""" | |
if is_offline_mode(): | |
return | |
data = {"example": example_name, "framework": framework} | |
for args in example_args: | |
args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None} | |
if "model_name_or_path" in args_as_dict: | |
model_name = args_as_dict["model_name_or_path"] | |
# Filter out local paths | |
if not os.path.isdir(model_name): | |
data["model_name"] = args_as_dict["model_name_or_path"] | |
if "dataset_name" in args_as_dict: | |
data["dataset_name"] = args_as_dict["dataset_name"] | |
elif "task_name" in args_as_dict: | |
# Extract script name from the example_name | |
script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "") | |
script_name = script_name.replace("_no_trainer", "") | |
data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}" | |
headers = {"user-agent": http_user_agent(data)} | |
try: | |
r = requests.head(HUGGINGFACE_CO_EXAMPLES_TELEMETRY, headers=headers) | |
r.raise_for_status() | |
except Exception: | |
# We don't want to error in case of connection errors of any kind. | |
pass | |
def convert_file_size_to_int(size: Union[int, str]): | |
""" | |
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes). | |
Args: | |
size (`int` or `str`): The size to convert. Will be directly returned if an `int`. | |
Example: | |
```py | |
>>> convert_file_size_to_int("1MiB") | |
1048576 | |
``` | |
""" | |
if isinstance(size, int): | |
return size | |
if size.upper().endswith("GIB"): | |
return int(size[:-3]) * (2**30) | |
if size.upper().endswith("MIB"): | |
return int(size[:-3]) * (2**20) | |
if size.upper().endswith("KIB"): | |
return int(size[:-3]) * (2**10) | |
if size.upper().endswith("GB"): | |
int_size = int(size[:-2]) * (10**9) | |
return int_size // 8 if size.endswith("b") else int_size | |
if size.upper().endswith("MB"): | |
int_size = int(size[:-2]) * (10**6) | |
return int_size // 8 if size.endswith("b") else int_size | |
if size.upper().endswith("KB"): | |
int_size = int(size[:-2]) * (10**3) | |
return int_size // 8 if size.endswith("b") else int_size | |
raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") | |
def get_checkpoint_shard_files( | |
pretrained_model_name_or_path, | |
index_filename, | |
cache_dir=None, | |
force_download=False, | |
proxies=None, | |
resume_download=False, | |
local_files_only=False, | |
token=None, | |
user_agent=None, | |
revision=None, | |
subfolder="", | |
_commit_hash=None, | |
**deprecated_kwargs, | |
): | |
""" | |
For a given model: | |
- download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the | |
Hub | |
- returns the list of paths to all the shards, as well as some metadata. | |
For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the | |
index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub). | |
""" | |
import json | |
use_auth_token = deprecated_kwargs.pop("use_auth_token", None) | |
if use_auth_token is not None: | |
warnings.warn( | |
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning | |
) | |
if token is not None: | |
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") | |
token = use_auth_token | |
if not os.path.isfile(index_filename): | |
raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.") | |
with open(index_filename, "r") as f: | |
index = json.loads(f.read()) | |
shard_filenames = sorted(set(index["weight_map"].values())) | |
sharded_metadata = index["metadata"] | |
sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys()) | |
sharded_metadata["weight_map"] = index["weight_map"].copy() | |
# First, let's deal with local folder. | |
if os.path.isdir(pretrained_model_name_or_path): | |
shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames] | |
return shard_filenames, sharded_metadata | |
# At this stage pretrained_model_name_or_path is a model identifier on the Hub | |
cached_filenames = [] | |
# Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of | |
# downloaded (if interrupted). | |
last_shard = try_to_load_from_cache( | |
pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash | |
) | |
show_progress_bar = last_shard is None or force_download | |
for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar): | |
try: | |
# Load from URL | |
cached_filename = cached_file( | |
pretrained_model_name_or_path, | |
shard_filename, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
proxies=proxies, | |
resume_download=resume_download, | |
local_files_only=local_files_only, | |
token=token, | |
user_agent=user_agent, | |
revision=revision, | |
subfolder=subfolder, | |
_commit_hash=_commit_hash, | |
) | |
# We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so | |
# we don't have to catch them here. | |
except EntryNotFoundError: | |
raise EnvironmentError( | |
f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is " | |
"required according to the checkpoint index." | |
) | |
except HTTPError: | |
raise EnvironmentError( | |
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try" | |
" again after checking your internet connection." | |
) | |
cached_filenames.append(cached_filename) | |
return cached_filenames, sharded_metadata | |
# All what is below is for conversion between old cache format and new cache format. | |
def get_all_cached_files(cache_dir=None): | |
""" | |
Returns a list for all files cached with appropriate metadata. | |
""" | |
if cache_dir is None: | |
cache_dir = TRANSFORMERS_CACHE | |
else: | |
cache_dir = str(cache_dir) | |
if not os.path.isdir(cache_dir): | |
return [] | |
cached_files = [] | |
for file in os.listdir(cache_dir): | |
meta_path = os.path.join(cache_dir, f"{file}.json") | |
if not os.path.isfile(meta_path): | |
continue | |
with open(meta_path, encoding="utf-8") as meta_file: | |
metadata = json.load(meta_file) | |
url = metadata["url"] | |
etag = metadata["etag"].replace('"', "") | |
cached_files.append({"file": file, "url": url, "etag": etag}) | |
return cached_files | |
def extract_info_from_url(url): | |
""" | |
Extract repo_name, revision and filename from an url. | |
""" | |
search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url) | |
if search is None: | |
return None | |
repo, revision, filename = search.groups() | |
cache_repo = "--".join(["models"] + repo.split("/")) | |
return {"repo": cache_repo, "revision": revision, "filename": filename} | |
def clean_files_for(file): | |
""" | |
Remove, if they exist, file, file.json and file.lock | |
""" | |
for f in [file, f"{file}.json", f"{file}.lock"]: | |
if os.path.isfile(f): | |
os.remove(f) | |
def move_to_new_cache(file, repo, filename, revision, etag, commit_hash): | |
""" | |
Move file to repo following the new huggingface hub cache organization. | |
""" | |
os.makedirs(repo, exist_ok=True) | |
# refs | |
os.makedirs(os.path.join(repo, "refs"), exist_ok=True) | |
if revision != commit_hash: | |
ref_path = os.path.join(repo, "refs", revision) | |
with open(ref_path, "w") as f: | |
f.write(commit_hash) | |
# blobs | |
os.makedirs(os.path.join(repo, "blobs"), exist_ok=True) | |
blob_path = os.path.join(repo, "blobs", etag) | |
shutil.move(file, blob_path) | |
# snapshots | |
os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True) | |
os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True) | |
pointer_path = os.path.join(repo, "snapshots", commit_hash, filename) | |
huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path) | |
clean_files_for(file) | |
def move_cache(cache_dir=None, new_cache_dir=None, token=None): | |
if new_cache_dir is None: | |
new_cache_dir = TRANSFORMERS_CACHE | |
if cache_dir is None: | |
# Migrate from old cache in .cache/huggingface/hub | |
old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers" | |
if os.path.isdir(str(old_cache)): | |
cache_dir = str(old_cache) | |
else: | |
cache_dir = new_cache_dir | |
cached_files = get_all_cached_files(cache_dir=cache_dir) | |
logger.info(f"Moving {len(cached_files)} files to the new cache system") | |
hub_metadata = {} | |
for file_info in tqdm(cached_files): | |
url = file_info.pop("url") | |
if url not in hub_metadata: | |
try: | |
hub_metadata[url] = get_hf_file_metadata(url, token=token) | |
except requests.HTTPError: | |
continue | |
etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash | |
if etag is None or commit_hash is None: | |
continue | |
if file_info["etag"] != etag: | |
# Cached file is not up to date, we just throw it as a new version will be downloaded anyway. | |
clean_files_for(os.path.join(cache_dir, file_info["file"])) | |
continue | |
url_info = extract_info_from_url(url) | |
if url_info is None: | |
# Not a file from huggingface.co | |
continue | |
repo = os.path.join(new_cache_dir, url_info["repo"]) | |
move_to_new_cache( | |
file=os.path.join(cache_dir, file_info["file"]), | |
repo=repo, | |
filename=url_info["filename"], | |
revision=url_info["revision"], | |
etag=etag, | |
commit_hash=commit_hash, | |
) | |
class PushInProgress: | |
""" | |
Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). | |
""" | |
def __init__(self, jobs: Optional[futures.Future] = None) -> None: | |
self.jobs = [] if jobs is None else jobs | |
def is_done(self): | |
return all(job.done() for job in self.jobs) | |
def wait_until_done(self): | |
futures.wait(self.jobs) | |
def cancel(self) -> None: | |
self.jobs = [ | |
job | |
for job in self.jobs | |
# Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list | |
if not (job.cancel() or job.done()) | |
] | |
cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt") | |
if not os.path.isfile(cache_version_file): | |
cache_version = 0 | |
else: | |
with open(cache_version_file) as f: | |
try: | |
cache_version = int(f.read()) | |
except ValueError: | |
cache_version = 0 | |
cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0 | |
if cache_version < 1 and cache_is_not_empty: | |
if is_offline_mode(): | |
logger.warning( | |
"You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local " | |
"cache seems to be the one of a previous version. It is very likely that all your calls to any " | |
"`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have " | |
"your cache be updated automatically, then you can go back to offline mode." | |
) | |
else: | |
logger.warning( | |
"The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a " | |
"one-time only operation. You can interrupt this and resume the migration later on by calling " | |
"`transformers.utils.move_cache()`." | |
) | |
try: | |
if TRANSFORMERS_CACHE != default_cache_path: | |
# Users set some env variable to customize cache storage | |
move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE) | |
else: | |
move_cache() | |
except Exception as e: | |
trace = "\n".join(traceback.format_tb(e.__traceback__)) | |
logger.error( | |
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " | |
"file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole " | |
"message and we will do our best to help." | |
) | |
if cache_version < 1: | |
try: | |
os.makedirs(TRANSFORMERS_CACHE, exist_ok=True) | |
with open(cache_version_file, "w") as f: | |
f.write("1") | |
except Exception: | |
logger.warning( | |
f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set " | |
"the environment variable TRANSFORMERS_CACHE to a writable directory." | |
) | |