Spaces:
Runtime error
Runtime error
liuyizhang
commited on
Commit
•
4de87d2
1
Parent(s):
9546498
delete files
Browse files- automatic_label_demo.py +0 -315
- grounded_sam.ipynb +0 -0
- grounding_dino_demo.py +0 -171
automatic_label_demo.py
DELETED
@@ -1,315 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import json
|
7 |
-
import torch
|
8 |
-
import torchvision
|
9 |
-
from PIL import Image, ImageDraw, ImageFont
|
10 |
-
|
11 |
-
# Grounding DINO
|
12 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
13 |
-
from GroundingDINO.groundingdino.models import build_model
|
14 |
-
from GroundingDINO.groundingdino.util import box_ops
|
15 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
16 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
17 |
-
|
18 |
-
# segment anything
|
19 |
-
from segment_anything import build_sam, SamPredictor
|
20 |
-
import cv2
|
21 |
-
import numpy as np
|
22 |
-
import matplotlib.pyplot as plt
|
23 |
-
|
24 |
-
# BLIP
|
25 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
26 |
-
|
27 |
-
# ChatGPT
|
28 |
-
import openai
|
29 |
-
|
30 |
-
|
31 |
-
def load_image(image_path):
|
32 |
-
# load image
|
33 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
34 |
-
|
35 |
-
transform = T.Compose(
|
36 |
-
[
|
37 |
-
T.RandomResize([800], max_size=1333),
|
38 |
-
T.ToTensor(),
|
39 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
40 |
-
]
|
41 |
-
)
|
42 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
43 |
-
return image_pil, image
|
44 |
-
|
45 |
-
|
46 |
-
def generate_caption(raw_image, device):
|
47 |
-
# unconditional image captioning
|
48 |
-
if device == "cuda":
|
49 |
-
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
50 |
-
else:
|
51 |
-
inputs = processor(raw_image, return_tensors="pt")
|
52 |
-
out = blip_model.generate(**inputs)
|
53 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
54 |
-
return caption
|
55 |
-
|
56 |
-
|
57 |
-
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
|
58 |
-
prompt = [
|
59 |
-
{
|
60 |
-
'role': 'system',
|
61 |
-
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
62 |
-
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
63 |
-
f'Caption: {caption}.'
|
64 |
-
}
|
65 |
-
]
|
66 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
67 |
-
reply = response['choices'][0]['message']['content']
|
68 |
-
# sometimes return with "noun: xxx, xxx, xxx"
|
69 |
-
tags = reply.split(':')[-1].strip()
|
70 |
-
return tags
|
71 |
-
|
72 |
-
|
73 |
-
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
|
74 |
-
object_list = [obj.split('(')[0] for obj in pred_phrases]
|
75 |
-
object_num = []
|
76 |
-
for obj in set(object_list):
|
77 |
-
object_num.append(f'{object_list.count(obj)} {obj}')
|
78 |
-
object_num = ', '.join(object_num)
|
79 |
-
print(f"Correct object number: {object_num}")
|
80 |
-
|
81 |
-
prompt = [
|
82 |
-
{
|
83 |
-
'role': 'system',
|
84 |
-
'content': 'Revise the number in the caption if it is wrong. ' + \
|
85 |
-
f'Caption: {caption}. ' + \
|
86 |
-
f'True object number: {object_num}. ' + \
|
87 |
-
'Only give the revised caption: '
|
88 |
-
}
|
89 |
-
]
|
90 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
91 |
-
reply = response['choices'][0]['message']['content']
|
92 |
-
# sometimes return with "Caption: xxx, xxx, xxx"
|
93 |
-
caption = reply.split(':')[-1].strip()
|
94 |
-
return caption
|
95 |
-
|
96 |
-
|
97 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
98 |
-
args = SLConfig.fromfile(model_config_path)
|
99 |
-
args.device = device
|
100 |
-
model = build_model(args)
|
101 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
102 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
103 |
-
print(load_res)
|
104 |
-
_ = model.eval()
|
105 |
-
return model
|
106 |
-
|
107 |
-
|
108 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
|
109 |
-
caption = caption.lower()
|
110 |
-
caption = caption.strip()
|
111 |
-
if not caption.endswith("."):
|
112 |
-
caption = caption + "."
|
113 |
-
model = model.to(device)
|
114 |
-
image = image.to(device)
|
115 |
-
with torch.no_grad():
|
116 |
-
outputs = model(image[None], captions=[caption])
|
117 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
118 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
119 |
-
logits.shape[0]
|
120 |
-
|
121 |
-
# filter output
|
122 |
-
logits_filt = logits.clone()
|
123 |
-
boxes_filt = boxes.clone()
|
124 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
125 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
126 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
127 |
-
logits_filt.shape[0]
|
128 |
-
|
129 |
-
# get phrase
|
130 |
-
tokenlizer = model.tokenizer
|
131 |
-
tokenized = tokenlizer(caption)
|
132 |
-
# build pred
|
133 |
-
pred_phrases = []
|
134 |
-
scores = []
|
135 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
136 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
137 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
138 |
-
scores.append(logit.max().item())
|
139 |
-
|
140 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
141 |
-
|
142 |
-
|
143 |
-
def show_mask(mask, ax, random_color=False):
|
144 |
-
if random_color:
|
145 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
146 |
-
else:
|
147 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
148 |
-
h, w = mask.shape[-2:]
|
149 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
150 |
-
ax.imshow(mask_image)
|
151 |
-
|
152 |
-
|
153 |
-
def show_box(box, ax, label):
|
154 |
-
x0, y0 = box[0], box[1]
|
155 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
156 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
157 |
-
ax.text(x0, y0, label)
|
158 |
-
|
159 |
-
|
160 |
-
def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
|
161 |
-
value = 0 # 0 for background
|
162 |
-
|
163 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
164 |
-
for idx, mask in enumerate(mask_list):
|
165 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
166 |
-
plt.figure(figsize=(10, 10))
|
167 |
-
plt.imshow(mask_img.numpy())
|
168 |
-
plt.axis('off')
|
169 |
-
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
170 |
-
|
171 |
-
json_data = {
|
172 |
-
'caption': caption,
|
173 |
-
'mask':[{
|
174 |
-
'value': value,
|
175 |
-
'label': 'background'
|
176 |
-
}]
|
177 |
-
}
|
178 |
-
for label, box in zip(label_list, box_list):
|
179 |
-
value += 1
|
180 |
-
name, logit = label.split('(')
|
181 |
-
logit = logit[:-1] # the last is ')'
|
182 |
-
json_data['mask'].append({
|
183 |
-
'value': value,
|
184 |
-
'label': name,
|
185 |
-
'logit': float(logit),
|
186 |
-
'box': box.numpy().tolist(),
|
187 |
-
})
|
188 |
-
with open(os.path.join(output_dir, 'label.json'), 'w') as f:
|
189 |
-
json.dump(json_data, f)
|
190 |
-
|
191 |
-
|
192 |
-
if __name__ == "__main__":
|
193 |
-
|
194 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
195 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
196 |
-
parser.add_argument(
|
197 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
198 |
-
)
|
199 |
-
parser.add_argument(
|
200 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
201 |
-
)
|
202 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
203 |
-
parser.add_argument("--split", default=",", type=str, help="split for text prompt")
|
204 |
-
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
205 |
-
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
206 |
-
parser.add_argument(
|
207 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
208 |
-
)
|
209 |
-
|
210 |
-
parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
|
211 |
-
parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
|
212 |
-
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
|
213 |
-
|
214 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
215 |
-
args = parser.parse_args()
|
216 |
-
|
217 |
-
# cfg
|
218 |
-
config_file = args.config # change the path of the model config file
|
219 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
220 |
-
sam_checkpoint = args.sam_checkpoint
|
221 |
-
image_path = args.input_image
|
222 |
-
split = args.split
|
223 |
-
openai_key = args.openai_key
|
224 |
-
openai_proxy = args.openai_proxy
|
225 |
-
output_dir = args.output_dir
|
226 |
-
box_threshold = args.box_threshold
|
227 |
-
text_threshold = args.text_threshold
|
228 |
-
iou_threshold = args.iou_threshold
|
229 |
-
device = args.device
|
230 |
-
|
231 |
-
openai.api_key = openai_key
|
232 |
-
if openai_proxy:
|
233 |
-
openai.proxy = {"http": openai_proxy, "https": openai_proxy}
|
234 |
-
|
235 |
-
# make dir
|
236 |
-
os.makedirs(output_dir, exist_ok=True)
|
237 |
-
# load image
|
238 |
-
image_pil, image = load_image(image_path)
|
239 |
-
# load model
|
240 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
241 |
-
|
242 |
-
# visualize raw image
|
243 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
244 |
-
|
245 |
-
# generate caption and tags
|
246 |
-
# use Tag2Text can generate better captions
|
247 |
-
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
248 |
-
# but there are some bugs...
|
249 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
250 |
-
if device == "cuda":
|
251 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
252 |
-
else:
|
253 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
254 |
-
caption = generate_caption(image_pil, device=device)
|
255 |
-
# Currently ", " is better for detecting single tags
|
256 |
-
# while ". " is a little worse in some case
|
257 |
-
text_prompt = generate_tags(caption, split=split)
|
258 |
-
print(f"Caption: {caption}")
|
259 |
-
print(f"Tags: {text_prompt}")
|
260 |
-
|
261 |
-
# run grounding dino model
|
262 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
263 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
264 |
-
)
|
265 |
-
|
266 |
-
# initialize SAM
|
267 |
-
sam = build_sam(checkpoint=sam_checkpoint)
|
268 |
-
sam.to(device=device)
|
269 |
-
predictor = SamPredictor(sam)
|
270 |
-
image = cv2.imread(image_path)
|
271 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
272 |
-
predictor.set_image(image)
|
273 |
-
|
274 |
-
size = image_pil.size
|
275 |
-
H, W = size[1], size[0]
|
276 |
-
for i in range(boxes_filt.size(0)):
|
277 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
278 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
279 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
280 |
-
|
281 |
-
boxes_filt = boxes_filt.cpu()
|
282 |
-
# use NMS to handle overlapped boxes
|
283 |
-
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
284 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
285 |
-
boxes_filt = boxes_filt[nms_idx]
|
286 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
287 |
-
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
288 |
-
caption = check_caption(caption, pred_phrases)
|
289 |
-
print(f"Revise caption with number: {caption}")
|
290 |
-
|
291 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
|
292 |
-
|
293 |
-
masks, _, _ = predictor.predict_torch(
|
294 |
-
point_coords = None,
|
295 |
-
point_labels = None,
|
296 |
-
boxes = transformed_boxes,
|
297 |
-
multimask_output = False,
|
298 |
-
)
|
299 |
-
|
300 |
-
# draw output image
|
301 |
-
plt.figure(figsize=(10, 10))
|
302 |
-
plt.imshow(image)
|
303 |
-
for mask in masks:
|
304 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
305 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
306 |
-
show_box(box.numpy(), plt.gca(), label)
|
307 |
-
|
308 |
-
plt.title(caption)
|
309 |
-
plt.axis('off')
|
310 |
-
plt.savefig(
|
311 |
-
os.path.join(output_dir, "automatic_label_output.jpg"),
|
312 |
-
bbox_inches="tight", dpi=300, pad_inches=0.0
|
313 |
-
)
|
314 |
-
|
315 |
-
save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
grounding_dino_demo.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
from PIL import Image, ImageDraw, ImageFont
|
7 |
-
|
8 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
9 |
-
from GroundingDINO.groundingdino.models import build_model
|
10 |
-
from GroundingDINO.groundingdino.util import box_ops
|
11 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
12 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
13 |
-
|
14 |
-
|
15 |
-
def plot_boxes_to_image(image_pil, tgt):
|
16 |
-
H, W = tgt["size"]
|
17 |
-
boxes = tgt["boxes"]
|
18 |
-
labels = tgt["labels"]
|
19 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
20 |
-
|
21 |
-
draw = ImageDraw.Draw(image_pil)
|
22 |
-
mask = Image.new("L", image_pil.size, 0)
|
23 |
-
mask_draw = ImageDraw.Draw(mask)
|
24 |
-
|
25 |
-
# draw boxes and masks
|
26 |
-
for box, label in zip(boxes, labels):
|
27 |
-
# from 0..1 to 0..W, 0..H
|
28 |
-
box = box * torch.Tensor([W, H, W, H])
|
29 |
-
# from xywh to xyxy
|
30 |
-
box[:2] -= box[2:] / 2
|
31 |
-
box[2:] += box[:2]
|
32 |
-
# random color
|
33 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
34 |
-
# draw
|
35 |
-
x0, y0, x1, y1 = box
|
36 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
37 |
-
|
38 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
39 |
-
# draw.text((x0, y0), str(label), fill=color)
|
40 |
-
|
41 |
-
font = ImageFont.load_default()
|
42 |
-
if hasattr(font, "getbbox"):
|
43 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
44 |
-
else:
|
45 |
-
w, h = draw.textsize(str(label), font)
|
46 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
47 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
48 |
-
draw.rectangle(bbox, fill=color)
|
49 |
-
draw.text((x0, y0), str(label), fill="white")
|
50 |
-
|
51 |
-
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
52 |
-
|
53 |
-
return image_pil, mask
|
54 |
-
|
55 |
-
|
56 |
-
def load_image(image_path):
|
57 |
-
# load image
|
58 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
59 |
-
|
60 |
-
transform = T.Compose(
|
61 |
-
[
|
62 |
-
T.RandomResize([800], max_size=1333),
|
63 |
-
T.ToTensor(),
|
64 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
65 |
-
]
|
66 |
-
)
|
67 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
68 |
-
return image_pil, image
|
69 |
-
|
70 |
-
|
71 |
-
def load_model(model_config_path, model_checkpoint_path, device="cpu"):
|
72 |
-
args = SLConfig.fromfile(model_config_path)
|
73 |
-
args.device = device
|
74 |
-
model = build_model(args)
|
75 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
76 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
77 |
-
print(load_res)
|
78 |
-
_ = model.eval()
|
79 |
-
return model
|
80 |
-
|
81 |
-
|
82 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
83 |
-
caption = caption.lower()
|
84 |
-
caption = caption.strip()
|
85 |
-
if not caption.endswith("."):
|
86 |
-
caption = caption + "."
|
87 |
-
model = model.to(device)
|
88 |
-
image = image.to(device)
|
89 |
-
with torch.no_grad():
|
90 |
-
outputs = model(image[None], captions=[caption])
|
91 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
92 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
93 |
-
logits.shape[0]
|
94 |
-
|
95 |
-
# filter output
|
96 |
-
logits_filt = logits.clone()
|
97 |
-
boxes_filt = boxes.clone()
|
98 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
99 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
100 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
101 |
-
logits_filt.shape[0]
|
102 |
-
|
103 |
-
# get phrase
|
104 |
-
tokenlizer = model.tokenizer
|
105 |
-
tokenized = tokenlizer(caption)
|
106 |
-
# build pred
|
107 |
-
pred_phrases = []
|
108 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
109 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
110 |
-
if with_logits:
|
111 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
112 |
-
else:
|
113 |
-
pred_phrases.append(pred_phrase)
|
114 |
-
|
115 |
-
return boxes_filt, pred_phrases
|
116 |
-
|
117 |
-
|
118 |
-
if __name__ == "__main__":
|
119 |
-
|
120 |
-
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True)
|
121 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
122 |
-
parser.add_argument(
|
123 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
124 |
-
)
|
125 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
126 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
127 |
-
parser.add_argument(
|
128 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
129 |
-
)
|
130 |
-
|
131 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
132 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
133 |
-
|
134 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
135 |
-
args = parser.parse_args()
|
136 |
-
|
137 |
-
# cfg
|
138 |
-
config_file = args.config # change the path of the model config file
|
139 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
140 |
-
image_path = args.input_image
|
141 |
-
text_prompt = args.text_prompt
|
142 |
-
output_dir = args.output_dir
|
143 |
-
box_threshold = args.box_threshold
|
144 |
-
text_threshold = args.box_threshold
|
145 |
-
device = args.device
|
146 |
-
|
147 |
-
# make dir
|
148 |
-
os.makedirs(output_dir, exist_ok=True)
|
149 |
-
# load image
|
150 |
-
image_pil, image = load_image(image_path)
|
151 |
-
# load model
|
152 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
153 |
-
|
154 |
-
# visualize raw image
|
155 |
-
# image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
156 |
-
|
157 |
-
# run model
|
158 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
159 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
160 |
-
)
|
161 |
-
|
162 |
-
# visualize pred
|
163 |
-
size = image_pil.size
|
164 |
-
pred_dict = {
|
165 |
-
"boxes": boxes_filt,
|
166 |
-
"size": [size[1], size[0]], # H,W
|
167 |
-
"labels": pred_phrases,
|
168 |
-
}
|
169 |
-
# import ipdb; ipdb.set_trace()
|
170 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
171 |
-
image_with_box.save(os.path.join(output_dir, "grounding_dino_output.jpg"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|