|
from langchain.chains import RetrievalQA |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler |
|
from langchain.vectorstores import Chroma |
|
from langchain.llms import GPT4All, LlamaCpp |
|
import os |
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from constants import CHROMA_SETTINGS |
|
|
|
def main(): |
|
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) |
|
db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) |
|
retriever = db.as_retriever() |
|
|
|
callbacks = [StreamingStdOutCallbackHandler()] |
|
match model_type: |
|
case "LlamaCpp": |
|
llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False) |
|
case "GPT4All": |
|
llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False) |
|
case _default: |
|
print(f"Model {model_type} not supported!") |
|
exit; |
|
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) |
|
|
|
while True: |
|
query = input("\nEnter a query: ") |
|
if query == "exit": |
|
break |
|
|
|
|
|
res = qa(query) |
|
answer, docs = res['result'], res['source_documents'] |
|
|
|
|
|
print("\n\n> Question:") |
|
print(query) |
|
print("\n> Answer:") |
|
print(answer) |
|
|
|
|
|
for document in docs: |
|
print("\n> " + document.metadata["source"] + ":") |
|
print(document.page_content) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|