import os | |
import streamlit as st | |
import requests | |
from typing import List | |
import json | |
import socket | |
from urllib3.connection import HTTPConnection | |
from app import embed_documents, retrieve_documents | |
API_BASE_URL = os.environ.get("API_BASE_URL") | |
embeddings_model_name = "all-MiniLM-L6-v2" | |
persist_directory = "db" | |
model = "tiiuae/falcon-7b-instruct" | |
from constants import CHROMA_SETTINGS | |
import chromadb | |
def list_of_collections(): | |
client = chromadb.Client(CHROMA_SETTINGS) | |
return (client.list_collections()) | |
def main(): | |
st.title("PrivateGPT App: Document Embedding and Retrieval") | |
# Document upload section | |
st.header("Document Upload") | |
files = st.file_uploader("Upload document", accept_multiple_files=True) | |
# collection_name = st.text_input("Collection Name") not working for some reason | |
if st.button("Embed"): | |
embed_documents(files, "collection_name") | |
# Query section | |
st.header("Document Retrieval") | |
collection_names = get_collection_names() | |
selected_collection = st.selectbox("Select a document", collection_names) | |
if selected_collection: | |
query = st.text_input("Query") | |
if st.button("Retrieve"): | |
retrieve_documents(query, selected_collection) | |
# def embed_documents(files:List[st.runtime.uploaded_file_manager.UploadedFile], collection_name:str): | |
# endpoint = f"{API_BASE_URL}/embed" | |
# files_data = [("files", file) for file in files] | |
# data = {"collection_name": collection_name} | |
# response = requests.post(endpoint, files=files_data, data=data) | |
# if response.status_code == 200: | |
# st.success("Documents embedded successfully!") | |
# else: | |
# st.error("Document embedding failed.") | |
# st.write(response.text) | |
def get_collection_names(): | |
collections = list_of_collections() | |
return [collection.name for collection in collections] | |
# def retrieve_documents(query: str, collection_name: str): | |
# endpoint = f"{API_BASE_URL}/retrieve" | |
# data = {"query": query, "collection_name": collection_name} | |
# # Modify socket options for the HTTPConnection class | |
# HTTPConnection.default_socket_options = ( | |
# HTTPConnection.default_socket_options + [ | |
# (socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1), | |
# (socket.SOL_TCP, socket.TCP_KEEPIDLE, 45), | |
# (socket.SOL_TCP, socket.TCP_KEEPINTVL, 10), | |
# (socket.SOL_TCP, socket.TCP_KEEPCNT, 6) | |
# ] | |
# ) | |
# response = requests.post(endpoint, params=data) | |
# if response.status_code == 200: | |
# result = response.json() | |
# st.subheader("Results") | |
# st.text(result["results"]) | |
# st.subheader("Documents") | |
# for doc in result["docs"]: | |
# st.text(doc) | |
# else: | |
# st.error("Failed to retrieve documents.") | |
# st.write(response.text) | |
if __name__ == "__main__": | |
main() |