from dotenv import load_dotenv from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceEmbeddings from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.vectorstores import Chroma from langchain.llms import GPT4All, LlamaCpp import os load_dotenv() embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME") persist_directory = os.environ.get('PERSIST_DIRECTORY') model_type = os.environ.get('MODEL_TYPE') model_path = os.environ.get('MODEL_PATH') model_n_ctx = os.environ.get('MODEL_N_CTX') from constants import CHROMA_SETTINGS def main(): embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) db = Chroma(persist_directory=persist_directory, embedding_function=embeddings, client_settings=CHROMA_SETTINGS) retriever = db.as_retriever() # Prepare the LLM callbacks = [StreamingStdOutCallbackHandler()] match model_type: case "LlamaCpp": llm = LlamaCpp(model_path=model_path, n_ctx=model_n_ctx, callbacks=callbacks, verbose=False) case "GPT4All": llm = GPT4All(model=model_path, n_ctx=model_n_ctx, backend='gptj', callbacks=callbacks, verbose=False) case _default: print(f"Model {model_type} not supported!") exit; qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) # Interactive questions and answers while True: query = input("\nEnter a query: ") if query == "exit": break # Get the answer from the chain res = qa(query) answer, docs = res['result'], res['source_documents'] # Print the result print("\n\n> Question:") print(query) print("\n> Answer:") print(answer) # Print the relevant sources used for the answer for document in docs: print("\n> " + document.metadata["source"] + ":") print(document.page_content) if __name__ == "__main__": main()