import os import glob from typing import List import argparse from langchain.document_loaders import ( CSVLoader, EverNoteLoader, PDFMinerLoader, TextLoader, UnstructuredEmailLoader, UnstructuredEPubLoader, UnstructuredHTMLLoader, UnstructuredMarkdownLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, UnstructuredWordDocumentLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings from langchain.docstore.document import Document from constants import CHROMA_SETTINGS load_dotenv() embeddings_model_name = "all-MiniLM-L6-v2" persist_directory = "db" model = "tiiuae/falcon-7b-instruct" # Map file extensions to document loaders and their arguments LOADER_MAPPING = { ".csv": (CSVLoader, {}), # ".docx": (Docx2txtLoader, {}), ".docx": (UnstructuredWordDocumentLoader, {}), ".enex": (EverNoteLoader, {}), ".eml": (UnstructuredEmailLoader, {}), ".epub": (UnstructuredEPubLoader, {}), ".html": (UnstructuredHTMLLoader, {}), ".md": (UnstructuredMarkdownLoader, {}), ".odt": (UnstructuredODTLoader, {}), ".pdf": (PDFMinerLoader, {}), ".pptx": (UnstructuredPowerPointLoader, {}), ".txt": (TextLoader, {"encoding": "utf8"}), # Add more mappings for other file extensions and loaders as needed } load_dotenv() def load_single_document(file_path: str) -> Document: ext = "." + file_path.rsplit(".", 1)[-1] if ext in LOADER_MAPPING: loader_class, loader_args = LOADER_MAPPING[ext] loader = loader_class(file_path, **loader_args) return loader.load()[0] raise ValueError(f"Unsupported file extension '{ext}'") def load_documents(source_dir: str) -> List[Document]: # Loads all documents from source documents directory all_files = [] for ext in LOADER_MAPPING: all_files.extend( glob.glob(os.path.join(source_dir, f"**/*{ext}"), recursive=True) ) return [load_single_document(file_path) for file_path in all_files] def main(collection): # Load environment variables embeddings_model_name = "all-MiniLM-L6-v2" persist_directory = "db" model = "tiiuae/falcon-7b-instruct" source_directory = "source_documents" os.makedirs(source_directory, exist_ok=True) # Load documents and split in chunks print(f"Loading documents from {source_directory}") chunk_size = 500 chunk_overlap = 50 documents = load_documents(source_directory) text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) texts = text_splitter.split_documents(documents) print(f"Loaded {len(documents)} documents from {source_directory}") print(f"Split into {len(texts)} chunks of text (max. {chunk_size} characters each)") # Create embeddings embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) # Create and store locally vectorstore db = Chroma.from_documents(texts, embeddings, collection_name=collection, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS) db.persist() db = None if __name__ == "__main__": # Create the argument parser parser = argparse.ArgumentParser() parser.add_argument("--collection", help="Saves the embedding in a collection name as specified") # Parse the command-line arguments args = parser.parse_args() main(args.collection)