Spaces:
Running
on
Zero
Running
on
Zero
Kvikontent
commited on
Commit
•
d18f074
1
Parent(s):
a3e5352
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Load the pre-trained pipeline
|
8 |
+
pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt-1-1")
|
9 |
+
|
10 |
+
# Define the Gradio interface
|
11 |
+
interface = gr.Interface(
|
12 |
+
fn=lambda img: generate_video(img),
|
13 |
+
inputs=gr.Image(type="pil"),
|
14 |
+
outputs=gr.Video(),
|
15 |
+
title="Stable Video Diffusion",
|
16 |
+
description="Upload an image to generate a video",
|
17 |
+
theme="soft"
|
18 |
+
)
|
19 |
+
|
20 |
+
# Define the function to generate the video
|
21 |
+
def generate_video(img):
|
22 |
+
# Convert the input image to a tensor
|
23 |
+
img_tensor = torch.tensor(img).unsqueeze(0) / 255.0
|
24 |
+
|
25 |
+
# Run the pipeline to generate the video
|
26 |
+
output = pipeline(img_tensor)
|
27 |
+
|
28 |
+
# Extract the video frames from the output
|
29 |
+
video_frames = output["video_frames"]
|
30 |
+
|
31 |
+
# Convert the video frames to a video
|
32 |
+
video = []
|
33 |
+
for frame in video_frames:
|
34 |
+
video.append(Image.fromarray(frame.detach().cpu().numpy()))
|
35 |
+
|
36 |
+
# Return the generated video
|
37 |
+
return video
|
38 |
+
|
39 |
+
# Launch the Gradio app
|
40 |
+
interface.launch()
|