xiankai123 commited on
Commit
c5b110a
1 Parent(s): 254fbfb

try mms / vits model based on the latest commit, ja translation

Browse files
Files changed (2) hide show
  1. app.py +12 -10
  2. requirements.txt +1 -1
app.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
@@ -12,30 +12,32 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("xiankai123/speecht5_finetuned_fleurs_de_de")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("xiankai123/speecht5_finetuned_fleurs_de_de").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "de"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
 
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
 
 
3
  import torch
4
  from datasets import load_dataset
5
 
6
+ from transformers import VitsModel, VitsTokenizer, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ model = VitsModel.from_pretrained("facebook/mms-tts")
16
+ tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts")
 
 
17
 
18
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
19
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
20
 
21
 
22
  def translate(audio):
23
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "ja"})
24
  return outputs["text"]
25
 
26
 
27
  def synthesise(text):
28
+ inputs = tokenizer(text, language="jpn", return_tensors="pt")
29
+ input_ids = inputs["input_ids"]
30
+
31
+ with torch.no_grad():
32
+ outputs = model(input_ids)
33
+
34
+ speech = outputs.audio[0]
35
+ return speech
36
 
37
 
38
  def speech_to_speech_translation(audio):
39
  translated_text = translate(audio)
40
  synthesised_speech = synthesise(translated_text)
 
41
  return 16000, synthesised_speech
42
 
43
 
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
  torch
2
- transformers
3
  datasets
4
  sentencepiece
 
1
  torch
2
+ git+https://github.com/hollance/transformers.git@e02de22514fd4ee16a126f263e033751c775b873
3
  datasets
4
  sentencepiece