xiankai123
commited on
Commit
•
c5b110a
1
Parent(s):
254fbfb
try mms / vits model based on the latest commit, ja translation
Browse files- app.py +12 -10
- requirements.txt +1 -1
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,30 +12,32 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("xiankai123/speecht5_finetuned_fleurs_de_de").to(device)
|
18 |
-
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
36 |
translated_text = translate(audio)
|
37 |
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
return 16000, synthesised_speech
|
40 |
|
41 |
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import VitsModel, VitsTokenizer, pipeline
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
model = VitsModel.from_pretrained("facebook/mms-tts")
|
16 |
+
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts")
|
|
|
|
|
17 |
|
18 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
19 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
20 |
|
21 |
|
22 |
def translate(audio):
|
23 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "ja"})
|
24 |
return outputs["text"]
|
25 |
|
26 |
|
27 |
def synthesise(text):
|
28 |
+
inputs = tokenizer(text, language="jpn", return_tensors="pt")
|
29 |
+
input_ids = inputs["input_ids"]
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(input_ids)
|
33 |
+
|
34 |
+
speech = outputs.audio[0]
|
35 |
+
return speech
|
36 |
|
37 |
|
38 |
def speech_to_speech_translation(audio):
|
39 |
translated_text = translate(audio)
|
40 |
synthesised_speech = synthesise(translated_text)
|
|
|
41 |
return 16000, synthesised_speech
|
42 |
|
43 |
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
torch
|
2 |
-
transformers
|
3 |
datasets
|
4 |
sentencepiece
|
|
|
1 |
torch
|
2 |
+
git+https://github.com/hollance/transformers.git@e02de22514fd4ee16a126f263e033751c775b873
|
3 |
datasets
|
4 |
sentencepiece
|