import spaces import gradio as gr from tryoff_inference import run_inference import os import numpy as np from PIL import Image import tempfile import torch from diffusers import FluxTransformer2DModel, FluxFillPipeline import subprocess subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" print('Loading diffusion model ...') transformer = FluxTransformer2DModel.from_pretrained( "xiaozaa/cat-tryoff-flux", torch_dtype=dtype ) pipe = FluxFillPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=dtype ).to(device) print('Loading Finished!') @spaces.GPU(duration=120) def gradio_inference( image_data, garment, num_steps=50, guidance_scale=30.0, seed=-1, width=768, height=1024 ): """Wrapper function for Gradio interface""" # Check if mask has been drawn if image_data is None or "layers" not in image_data or not image_data["layers"]: raise gr.Error("Please draw a mask over the clothing area before generating!") # Check if mask is empty (all black) mask = image_data["layers"][0] mask_array = np.array(mask) if np.all(mask_array < 10): raise gr.Error("The mask is empty! Please draw over the clothing area you want to replace.") # Use temporary directory with tempfile.TemporaryDirectory() as tmp_dir: # Save inputs to temp directory temp_image = os.path.join(tmp_dir, "image.png") temp_mask = os.path.join(tmp_dir, "mask.png") # Extract image and mask from ImageEditor data image = image_data["background"] mask = image_data["layers"][0] # First layer contains the mask # Convert to numpy array and process mask mask_array = np.array(mask) is_black = np.all(mask_array < 10, axis=2) mask = Image.fromarray(((~is_black) * 255).astype(np.uint8)) # Save files to temp directory image.save(temp_image) mask.save(temp_mask) try: # Run inference garment_result, _ = run_inference( pipe=pipe, image_path=temp_image, mask_path=temp_mask, num_steps=num_steps, guidance_scale=guidance_scale, seed=seed, size=(width, height) ) return garment_result except Exception as e: raise gr.Error(f"Error during inference: {str(e)}") with gr.Blocks() as demo: gr.Markdown(""" # CAT-TRYOFF-FLUX Virtual Try-Off Demo Upload a model image, draw a mask, and a garment image to generate virtual try-off results. """) # gr.Video("example/github.mp4", label="Demo Video: How to use the tool") with gr.Column(): gr.Markdown(""" ### ⚠️ Important: 1. Choose a model image or upload your own 2. Use the Pen tool to draw a mask over the clothing area you want to restore """) with gr.Row(): with gr.Column(): image_input = gr.ImageMask( label="Model Image (Click 'Edit' and draw mask over the clothing area)", type="pil", height=600, width=300 ) gr.Examples( examples=[ ["./example/person/00008_00.jpg"], ["./example/person/00055_00.jpg"], ["./example/person/00064_00.jpg"], ["./example/person/00067_00.jpg"], ["./example/person/00069_00.jpg"], ], inputs=[image_input], label="Person Images", ) with gr.Column(): garment_output = gr.Image(label="Try-off Result", height=600, width=300) with gr.Row(): num_steps = gr.Slider( minimum=1, maximum=100, value=30, step=1, label="Number of Steps" ) guidance_scale = gr.Slider( minimum=1.0, maximum=50.0, value=30.0, step=0.5, label="Guidance Scale" ) seed = gr.Slider( minimum=-1, maximum=2147483647, step=1, value=-1, label="Seed (-1 for random)" ) width = gr.Slider( minimum=256, maximum=1024, step=64, value=768, label="Width" ) height = gr.Slider( minimum=256, maximum=1024, step=64, value=1024, label="Height" ) submit_btn = gr.Button("Generate Try-off", variant="primary") with gr.Row(): gr.Markdown(""" ### Notes: - The model is trained on VITON-HD dataset. It focuses on the woman upper body Try-off generation. - The mask should indicate the region where the garment will be placed. - The model is not perfect. It may generate some artifacts. - The model is slow. Please be patient. - The model is just for research purpose. """) submit_btn.click( fn=gradio_inference, inputs=[ image_input, num_steps, guidance_scale, seed, width, height ], outputs=[garment_output], api_name="try-off" ) demo.launch()