Spaces:
Runtime error
Runtime error
File size: 7,819 Bytes
3dac99f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# Prepare Datasets for FrozenSeg
A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
and how to add new datasets to them.
FrozenSeg has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
`DETECTRON2_DATASETS`.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
```
$DETECTRON2_DATASETS/
# panoptic datasets
ADEChallengeData2016/
coco/
cityscapes/
mapillary_vistas/
bdd100k/
# semantic datasets
VOCdevkit/
ADE20K_2021_17_01/
pascal_ctx_d2/
pascal_voc_d2/
```
You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
If left unset, the default is `./datasets` relative to your current working directory.
## Expected dataset structure for [COCO](https://cocodataset.org/#download):
```
coco/
annotations/
instances_{train,val}2017.json
panoptic_{train,val}2017.json
{train,val}2017/
# image files that are mentioned in the corresponding json
panoptic_{train,val}2017/ # png annotations
panoptic_semseg_{train,val}2017/ # generated by the script mentioned below
```
Install panopticapi by:
```
pip install git+https://github.com/cocodataset/panopticapi.git
```
Then, run `python datasets/prepare_coco_semantic_annos_from_panoptic_annos.py`, to extract semantic annotations from panoptic annotations (only used for evaluation).
## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/):
```
cityscapes/
gtFine/
train/
aachen/
color.png, instanceIds.png, labelIds.png, polygons.json,
labelTrainIds.png
...
val/
test/
# below are generated Cityscapes panoptic annotation
cityscapes_panoptic_train.json
cityscapes_panoptic_train/
cityscapes_panoptic_val.json
cityscapes_panoptic_val/
cityscapes_panoptic_test.json
cityscapes_panoptic_test/
leftImg8bit/
train/
val/
test/
```
Install cityscapes scripts by:
```
pip install git+https://github.com/mcordts/cityscapesScripts.git
```
Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
```
These files are not needed for instance segmentation.
Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
```
These files are not needed for semantic and instance segmentation.
## Expected dataset structure for [ADE20k (A150)](http://sceneparsing.csail.mit.edu/):
```
ADEChallengeData2016/
images/
annotations/
objectInfo150.txt
# download instance annotation
annotations_instance/
# generated by prepare_ade20k_sem_seg.py
annotations_detectron2/
# below are generated by prepare_ade20k_pan_seg.py
ade20k_panoptic_{train,val}.json
ade20k_panoptic_{train,val}/
# below are generated by prepare_ade20k_ins_seg.py
ade20k_instance_{train,val}.json
```
The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.
Install panopticapi by:
```bash
pip install git+https://github.com/cocodataset/panopticapi.git
```
Download the instance annotation from http://sceneparsing.csail.mit.edu/:
```bash
wget http://sceneparsing.csail.mit.edu/data/ChallengeData2017/annotations_instance.tar
```
Then, run `python datasets/prepare_ade20k_pan_seg.py`, to combine semantic and instance annotations for panoptic annotations.
And run `python datasets/prepare_ade20k_ins_seg.py`, to extract instance annotations in COCO format.
## Expected dataset structure for [Mapillary Vistas](https://www.mapillary.com/dataset/vistas):
```
mapillary_vistas/
training/
images/
instances/
labels/
panoptic/
validation/
images/
instances/
labels/
panoptic/
```
No preprocessing is needed for Mapillary Vistas on semantic and panoptic segmentation.
## Expected dataset structure for [BDD100K](https://doc.bdd100k.com/download.html#id1)
```
bdd100k/
images/
10k/
train/
val/
test/
json
labels/
pan_seg/
sem_seg/
```
`coco-format` annotations is obtained by running:
```
cd $DETECTRON2_DATASETS
wget https://github.com/chenxi52/FrozenSeg/releases/download/latest/bdd100k_json.zip
unzip bdd100k_json.zip
```
## Expected dataset structure for [ADE20k-Full (A-847)](https://groups.csail.mit.edu/vision/datasets/ADE20K/):
```
ADE20K_2021_17_01/
images/
index_ade20k.pkl
objects.txt
# generated by prepare_ade20k_full_sem_seg.py
images_detectron2/
annotations_detectron2/
```
Register and download the dataset from https://groups.csail.mit.edu/vision/datasets/ADE20K/:
```bash
cd $DETECTRON2_DATASETS
wget your/personal/download/link/{username}_{hash}.zip
unzip {username}_{hash}.zip
```
Generate the directories `ADE20K_2021_17_01/images_detectron2` and `ADE20K_2021_17_01/annotations_detectron2` by running:
```bash
python datasets/prepare_ade20k_full_sem_seg.py
```
## Expected dataset structure for [PASCAL Context Full (PC-459)](https://www.cs.stanford.edu/~roozbeh/pascal-context/) and [PASCAL VOC (PAS-21)](http://host.robots.ox.ac.uk/pascal/VOC/):
```bash
VOCdevkit/
VOC2012/
Annotations/
JPEGImages/
ImageSets/
Segmentation/
VOC2010/
JPEGImages/
trainval/
trainval_merged.json
# generated by prepare_pascal_voc_sem_seg.py
pascal_voc_d2/
images/
annotations_pascal21/
# pascal 20 excludes the background class
annotations_pascal20/
# generated by prepare_pascal_ctx_sem_seg.py
pascal_ctx_d2/
images/
annotations_ctx59/
# generated by prepare_pascal_ctx_full_sem_seg.py
annotations_ctx459/
```
### PASCAL VOC (PAS-21)
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/:
```bash
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
# generate folder VOCdevkit/VOC2012
tar -xvf VOCtrainval_11-May-2012.tar
```
Generate directory `pascal_voc_d2` running:
```bash
python datasets/prepare_pascal_voc_sem_seg.py
```
### PASCAL Context Full (PC-459)
Download the dataset from http://host.robots.ox.ac.uk/pascal/VOC/ and annotation from https://www.cs.stanford.edu/~roozbeh/pascal-context/:
```bash
cd $DETECTRON2_DATASETS
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2010/VOCtrainval_03-May-2010.tar
# generate folder VOCdevkit/VOC2010
tar -xvf VOCtrainval_03-May-2010.tar
wget https://www.cs.stanford.edu/~roozbeh/pascal-context/trainval.tar.gz
# generate folder VOCdevkit/VOC2010/trainval
tar -xvzf trainval.tar.gz -C VOCdevkit/VOC2010
wget https://codalabuser.blob.core.windows.net/public/trainval_merged.json -P VOCdevkit/VOC2010/
```
Install [Detail API](https://github.com/zhanghang1989/detail-api) by:
```bash
git clone https://github.com/zhanghang1989/detail-api.git
rm detail-api/PythonAPI/detail/_mask.c
pip install -e detail-api/PythonAPI/
```
Generate directory `pascal_ctx_d2/images` running:
```bash
python datasets/prepare_pascal_ctx_sem_seg.py
```
Generate directory `pascal_ctx_d2/annotations_ctx459` running:
```bash
python datasets/prepare_pascal_ctx_full_sem_seg.py
``` |