import json import logging import numpy as np import os from PIL import Image from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.data.datasets.coco import load_coco_json, register_coco_instances from detectron2.utils.file_io import PathManager from . import openseg_classes import copy COCO_CATEGORIES = openseg_classes.get_coco_categories_with_prompt_eng() COCO_CATEGORIES = [x for x in COCO_CATEGORIES if x["isthing"] == 1] _PREDEFINED_SPLITS = { # point annotations without masks "openvocab_coco_2017_train": ( "coco/train2017", "coco/annotations/instances_train2017.json", ), "openvocab_coco_2017_val": ( "coco/val2017", "coco/annotations/instances_val2017.json", ), } def _get_coco_instances_meta(): thing_ids = [k["id"] for k in COCO_CATEGORIES] assert len(thing_ids) == 80, len(thing_ids) # Mapping from the incontiguous ADE category id to an id in [0, 99] thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)} thing_classes = [k["name"] for k in COCO_CATEGORIES] ret = { "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id, "thing_classes": thing_classes, } return ret def register_all_coco_instance(root): for key, (image_root, json_file) in _PREDEFINED_SPLITS.items(): # Assume pre-defined datasets live in `./datasets`. register_coco_instances( key, _get_coco_instances_meta(), os.path.join(root, json_file) if "://" not in json_file else json_file, os.path.join(root, image_root), ) _root = os.getenv("DETECTRON2_DATASETS", "datasets") register_all_coco_instance(_root)