Spaces:
Sleeping
Sleeping
File size: 13,755 Bytes
2fd6166 cd9aff3 2fd6166 cd9aff3 2fd6166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
"""
Demo for template-free reconstruction
python demo.py model=ho-attn run.image_path=/BS/xxie-2/work/HDM/outputs/000000017450/k1.color.jpg run.job=sample model.predict_binary=True dataset.std_coverage=3.0
"""
import pickle as pkl
import sys, os
import os.path as osp
from typing import Iterable, Optional
import cv2
from accelerate import Accelerator
from tqdm import tqdm
from glob import glob
sys.path.append(os.getcwd())
import hydra
import torch
import numpy as np
import imageio
from torch.utils.data import DataLoader
from pytorch3d.datasets import R2N2, collate_batched_meshes
from pytorch3d.structures import Pointclouds
from pytorch3d.renderer import PerspectiveCameras, look_at_view_transform
from pytorch3d.io import IO
import torchvision.transforms.functional as TVF
from huggingface_hub import hf_hub_download
import training_utils
from configs.structured import ProjectConfig
from dataset.demo_dataset import DemoDataset
from model import CrossAttenHODiffusionModel, ConditionalPCDiffusionSeparateSegm
from render.pyt3d_wrapper import PcloudRenderer
class DemoRunner:
def __init__(self, cfg: ProjectConfig):
cfg.model.model_name, cfg.model.predict_binary = 'pc2-diff-ho-sepsegm', True
model_stage1 = ConditionalPCDiffusionSeparateSegm(**cfg.model)
cfg.model.model_name, cfg.model.predict_binary = 'diff-ho-attn', False # stage 2 does not predict segmentation
model_stage2 = CrossAttenHODiffusionModel(**cfg.model)
# Load from checkpoint
# ckpt_file1 = os.path.join(cfg.run.code_dir_abs, f'outputs/{cfg.run.stage1_name}/single/checkpoint-latest.pth')
# self.load_checkpoint(ckpt_file1, model_stage1)
# ckpt_file2 = os.path.join(cfg.run.code_dir_abs, f'outputs/{cfg.run.stage2_name}/single/checkpoint-latest.pth')
# self.load_checkpoint(ckpt_file2, model_stage2)
# Load ckpt from hf
ckpt_file1 = hf_hub_download("xiexh20/HDM-models", f'{cfg.run.stage1_name}.pth')
self.load_checkpoint(ckpt_file1, model_stage1)
ckpt_file2 = hf_hub_download("xiexh20/HDM-models", f'{cfg.run.stage2_name}.pth')
self.load_checkpoint(ckpt_file2, model_stage2)
self.model_stage1, self.model_stage2 = model_stage1, model_stage2
self.model_stage1.eval()
self.model_stage2.eval()
self.model_stage1.to('cuda')
self.model_stage2.to('cuda')
self.cfg = cfg
self.io_pc = IO()
# For visualization
self.renderer = PcloudRenderer(image_size=cfg.dataset.image_size, radius=0.0075)
self.rend_size = cfg.dataset.image_size
self.device = 'cuda'
def load_checkpoint(self, ckpt_file1, model_stage1, device='cpu'):
checkpoint = torch.load(ckpt_file1, map_location=device)
state_dict, key = checkpoint['model'], 'model'
if any(k.startswith('module.') for k in state_dict.keys()):
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
print('Removed "module." from checkpoint state dict')
missing_keys, unexpected_keys = model_stage1.load_state_dict(state_dict, strict=False)
print(f'Loaded model checkpoint {key} from {ckpt_file1}')
if len(missing_keys):
print(f' - Missing_keys: {missing_keys}')
if len(unexpected_keys):
print(f' - Unexpected_keys: {unexpected_keys}')
def reload_checkpoint(self, cat_name):
"load checkpoint of models fine tuned on specific categories"
ckpt_file1 = hf_hub_download("xiexh20/HDM-models", f'{self.cfg.run.stage1_name}-{cat_name}.pth')
self.load_checkpoint(ckpt_file1, self.model_stage1, device=self.device)
ckpt_file2 = hf_hub_download("xiexh20/HDM-models", f'{self.cfg.run.stage2_name}-{cat_name}.pth')
self.load_checkpoint(ckpt_file2, self.model_stage2, device=self.device)
@torch.no_grad()
def run(self):
"simply run the demo on given images, and save the results"
# Set random seed
training_utils.set_seed(self.cfg.run.seed)
outdir = osp.join(self.cfg.run.code_dir_abs, 'outputs/demo')
os.makedirs(outdir, exist_ok=True)
cfg = self.cfg
# Init data
image_files = sorted(glob(cfg.run.image_path))
data = DemoDataset(image_files,
(cfg.dataset.image_size, cfg.dataset.image_size),
cfg.dataset.std_coverage)
dataloader = DataLoader(data, batch_size=cfg.dataloader.batch_size,
collate_fn=collate_batched_meshes,
num_workers=1, shuffle=False)
dataloader = dataloader
progress_bar = tqdm(dataloader)
for batch_idx, batch in enumerate(progress_bar):
progress_bar.set_description(f'Processing batch {batch_idx:4d} / {len(dataloader):4d}')
out_stage1, out_stage2 = self.forward_batch(batch, cfg)
bs = len(out_stage1)
camera_full = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T']),
K=torch.stack(batch['K']),
device='cuda',
in_ndc=True)
# save output
for i in range(bs):
image_path = str(batch['image_path'])
folder, fname = osp.basename(osp.dirname(image_path)), osp.splitext(osp.basename(image_path))[0]
out_i = osp.join(outdir, folder)
os.makedirs(out_i, exist_ok=True)
self.io_pc.save_pointcloud(data=out_stage1[i],
path=osp.join(out_i, f'{fname}_stage1.ply'))
self.io_pc.save_pointcloud(data=out_stage2[i],
path=osp.join(out_i, f'{fname}_stage2.ply'))
TVF.to_pil_image(batch['images'][i]).save(osp.join(out_i, f'{fname}_input.png'))
# Save metadata as well
metadata = dict(index=i,
camera=camera_full[i],
image_size_hw=batch['image_size_hw'][i],
image_path=batch['image_path'][i])
torch.save(metadata, osp.join(out_i, f'{fname}_meta.pth'))
# Visualize
# front_camera = camera_full[i]
pc_comb = Pointclouds([out_stage1[i].points_packed(), out_stage2[i].points_packed()],
features=[out_stage1[i].features_packed(), out_stage2[i].features_packed()])
video_file = osp.join(out_i, f'{fname}_360view.mp4')
video_writer = imageio.get_writer(video_file, format='FFMPEG', mode='I', fps=1)
# first render front view
rend_stage1, _ = self.renderer.render(out_stage1[i], camera_full[i], mode='mask')
rend_stage2, _ = self.renderer.render(out_stage2[i], camera_full[i], mode='mask')
comb = np.concatenate([batch['images'][i].permute(1, 2, 0).cpu().numpy(), rend_stage1, rend_stage2], 1)
video_writer.append_data((comb*255).astype(np.uint8))
for azim in range(180, 180+360, 30):
R, T = look_at_view_transform(1.7, 0, azim, up=((0, -1, 0),), )
side_camera = PerspectiveCameras(image_size=((self.rend_size, self.rend_size),),
device=self.device,
R=R.repeat(2, 1, 1), T=T.repeat(2, 1),
focal_length=self.rend_size * 1.5,
principal_point=((self.rend_size / 2., self.rend_size / 2.),),
in_ndc=False)
rend, mask = self.renderer.render(pc_comb, side_camera, mode='mask')
imgs = [batch['images'][i].permute(1, 2, 0).cpu().numpy()]
imgs.extend([rend[0], rend[1]])
video_writer.append_data((np.concatenate(imgs, 1)*255).astype(np.uint8))
print(f"Visualization saved to {out_i}")
@torch.no_grad()
def forward_batch(self, batch, cfg):
"""
forward one batch
:param batch:
:param cfg:
:return: predicted point clouds of stage 1 and 2
"""
camera_full = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(batch['T']),
K=torch.stack(batch['K']),
device='cuda',
in_ndc=True)
out_stage1 = self.model_stage1.forward_sample(num_points=cfg.dataset.max_points,
camera=camera_full,
image_rgb=torch.stack(batch['images']).to('cuda'),
mask=torch.stack(batch['masks']).to('cuda'),
scheduler=cfg.run.diffusion_scheduler,
num_inference_steps=cfg.run.num_inference_steps,
)
# segment and normalize human/object
bs = len(out_stage1)
pred_hum, pred_obj = [], [] # predicted human/object points
cent_hum_pred, cent_obj_pred = [], []
radius_hum_pred, radius_obj_pred = [], []
T_hum, T_obj = [], []
num_samples = int(cfg.dataset.max_points / 2)
for i in range(bs):
pc: Pointclouds = out_stage1[i]
vc = pc.features_packed().cpu() # (P, 3), human is light blue [0.1, 1.0, 1.0], object light green [0.5, 1.0, 0]
points = pc.points_packed().cpu() # (P, 3)
mask_hum = vc[:, 2] > 0.5
pc_hum, pc_obj = points[mask_hum], points[~mask_hum]
# Up/Down-sample the points
pc_obj = self.upsample_predicted_pc(num_samples, pc_obj)
pc_hum = self.upsample_predicted_pc(num_samples, pc_hum)
# Normalize
cent_hum, cent_obj = torch.mean(pc_hum, 0, keepdim=True), torch.mean(pc_obj, 0, keepdim=True)
scale_hum = torch.sqrt(torch.sum((pc_hum - cent_hum) ** 2, -1).max())
scale_obj = torch.sqrt(torch.sum((pc_obj - cent_obj) ** 2, -1).max())
pc_hum = (pc_hum - cent_hum) / (2 * scale_hum)
pc_obj = (pc_obj - cent_obj) / (2 * scale_obj)
# Also update camera parameters for separate human + object
T_hum_scaled = (batch['T_ho'][i] + cent_hum.squeeze(0)) / (2 * scale_hum)
T_obj_scaled = (batch['T_ho'][i] + cent_obj.squeeze(0)) / (2 * scale_obj)
pred_hum.append(pc_hum)
pred_obj.append(pc_obj)
cent_hum_pred.append(cent_hum.squeeze(0))
cent_obj_pred.append(cent_obj.squeeze(0))
T_hum.append(T_hum_scaled * torch.tensor([-1, -1, 1])) # apply opencv to pytorch3d transform: flip x and y
T_obj.append(T_obj_scaled * torch.tensor([-1, -1, 1]))
radius_hum_pred.append(scale_hum)
radius_obj_pred.append(scale_obj)
# Pack data into a new batch dict
camera_hum = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(T_hum),
K=torch.stack(batch['K_hum']),
device='cuda',
in_ndc=True
)
camera_obj = PerspectiveCameras(
R=torch.stack(batch['R']),
T=torch.stack(T_obj),
K=torch.stack(batch['K_obj']), # the camera should be human/object specific!!!
device='cuda',
in_ndc=True
)
# use pc from predicted
pc_hum = Pointclouds([x.to('cuda') for x in pred_hum])
pc_obj = Pointclouds([x.to('cuda') for x in pred_obj])
# use center and radius from predicted
cent_hum = torch.stack(cent_hum_pred, 0).to('cuda')
cent_obj = torch.stack(cent_obj_pred, 0).to('cuda') # B, 3
radius_hum = torch.stack(radius_hum_pred, 0).to('cuda') # B, 1
radius_obj = torch.stack(radius_obj_pred, 0).to('cuda')
out_stage2: Pointclouds = self.model_stage2.forward_sample(
num_points=num_samples,
camera=camera_hum,
image_rgb=torch.stack(batch['images_hum'], 0).to('cuda'),
mask=torch.stack(batch['masks_hum'], 0).to('cuda'),
gt_pc=pc_hum,
rgb_obj=torch.stack(batch['images_obj'], 0).to('cuda'),
mask_obj=torch.stack(batch['masks_obj'], 0).to('cuda'),
pc_obj=pc_obj,
camera_obj=camera_obj,
cent_hum=cent_hum,
cent_obj=cent_obj,
radius_hum=radius_hum.unsqueeze(-1),
radius_obj=radius_obj.unsqueeze(-1),
sample_from_interm=True,
noise_step=cfg.run.sample_noise_step)
return out_stage1, out_stage2
def upsample_predicted_pc(self, num_samples, pc_obj):
"""
Up/Downsample the points to given number
:param num_samples: the target number
:param pc_obj: (N, 3)
:return: (num_samples, 3)
"""
if len(pc_obj) > num_samples:
ind_obj = np.random.choice(len(pc_obj), num_samples)
else:
ind_obj = np.concatenate([np.arange(len(pc_obj)), np.random.choice(len(pc_obj), num_samples - len(pc_obj))])
pc_obj = pc_obj.clone()[torch.from_numpy(ind_obj).long().to(pc_obj.device)]
return pc_obj
@hydra.main(config_path='configs', config_name='configs', version_base='1.1')
def main(cfg: ProjectConfig):
runner = DemoRunner(cfg)
runner.run()
if __name__ == '__main__':
main() |