File size: 7,175 Bytes
2fd6166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import torch
import torch.nn as nn

from model.pvcnn.modules import Attention
from model.pvcnn.pvcnn_utils import create_mlp_components, create_pointnet2_sa_components, create_pointnet2_fp_modules
from model.pvcnn.pvcnn_utils import get_timestep_embedding


class PVCNN2Base(nn.Module):
    def __init__(
        self, 
        num_classes: int, 
        embed_dim: int, 
        use_att: bool = True, 
        dropout: float = 0.1,
        extra_feature_channels: int = 3, 
        width_multiplier: int = 1, 
        voxel_resolution_multiplier: int = 1
    ):
        super().__init__()
        assert extra_feature_channels >= 0
        self.embed_dim = embed_dim
        self.dropout = dropout
        self.width_multiplier = width_multiplier
        
        self.in_channels = extra_feature_channels + 3

        # Create PointNet-2 model
        sa_layers, sa_in_channels, channels_sa_features, _ = create_pointnet2_sa_components(
            sa_blocks_config=self.sa_blocks,
            extra_feature_channels=extra_feature_channels, 
            with_se=True, 
            embed_dim=embed_dim,
            use_att=use_att, 
            dropout=dropout,
            width_multiplier=width_multiplier, 
            voxel_resolution_multiplier=voxel_resolution_multiplier
        )
        self.sa_layers = nn.ModuleList(sa_layers)

        # Additional global attention module, default true
        self.global_att = None if not use_att else Attention(channels_sa_features, 8, D=1)

        # Only use extra features in the last fp module
        sa_in_channels[0] = extra_feature_channels
        fp_layers, channels_fp_features = create_pointnet2_fp_modules(
            fp_blocks=self.fp_blocks, 
            in_channels=channels_sa_features,
            sa_in_channels=sa_in_channels,
            with_se=True,
            embed_dim=embed_dim, 
            use_att=use_att, 
            dropout=dropout, 
            width_multiplier=width_multiplier,
            voxel_resolution_multiplier=voxel_resolution_multiplier
        )
        self.fp_layers = nn.ModuleList(fp_layers)

        # Create MLP layers
        self.channels_fp_features = channels_fp_features
        layers, _ = create_mlp_components(
            in_channels=channels_fp_features, 
            out_channels=[128, dropout, num_classes],  # was 0.5
            classifier=True, 
            dim=2, 
            width_multiplier=width_multiplier
        )
        self.classifier = nn.Sequential(*layers) # applied to point features directly

        # Time embedding function
        self.embedf = nn.Sequential(
            nn.Linear(embed_dim, embed_dim),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Linear(embed_dim, embed_dim),
        )

    def forward(self, inputs: torch.Tensor, t: torch.Tensor, ret_feats=False):
        """
        The inputs have size (B, 3 + S, N), where S is the number of additional
        feature channels and N is the number of points. The timesteps t can be either 
        continuous or discrete. This model has a sort of U-Net-like structure I think, 
        which is why it first goes down and then up in terms of resolution (?)

        torch.Size([16, 394, 16384])
    Downscaling step 0 feature shape: torch.Size([16, 64, 1024])
    Downscaling step 1 feature shape: torch.Size([16, 128, 256])
    Downscaling step 2 feature shape: torch.Size([16, 256, 64])
    Downscaling step 3 feature shape: torch.Size([16, 512, 16])
    Upscaling step 0 feature shape: torch.Size([16, 256, 64])
    Upscaling step 1 feature shape: torch.Size([16, 256, 256])
    Upscaling step 2 feature shape: torch.Size([16, 128, 1024])
    Upscaling step 3 feature shape: torch.Size([16, 64, 16384])

        """

        # Embed timesteps, sinusoidal encoding
        t_emb = get_timestep_embedding(self.embed_dim, t, inputs.device).float()
        t_emb = self.embedf(t_emb)[:, :, None].expand(-1, -1, inputs.shape[-1])

        # Separate input coordinates and features
        coords = inputs[:, :3, :].contiguous()  # (B, 3, N) range (-3.5, 3.5)
        features = inputs  # (B, 3 + S, N)
        
        # Downscaling layers
        coords_list = []
        in_features_list = []
        for i, sa_blocks in enumerate(self.sa_layers):
            in_features_list.append(features)
            coords_list.append(coords)
            if i == 0:
                features, coords, t_emb = sa_blocks((features, coords, t_emb))
            else:
                features, coords, t_emb = sa_blocks((torch.cat([features, t_emb], dim=1), coords, t_emb))
        
        # Replace the input features 
        in_features_list[0] = inputs[:, 3:, :].contiguous()
        
        # Apply global attention layer
        if self.global_att is not None:
            features = self.global_att(features)
        
        # Upscaling layers
        feats_list = [] # save intermediate features from the decoder layers
        for fp_idx, fp_blocks in enumerate(self.fp_layers):
            features, coords, t_emb = fp_blocks(
                (  # this is a tuple because of nn.Sequential
                    coords_list[-1 - fp_idx],  # reverse coords list from above
                    coords,  # original point coordinates
                    torch.cat([features, t_emb], dim=1),  # keep concatenating upsampled features with timesteps
                    in_features_list[-1 - fp_idx],  # reverse features list from above
                    t_emb  # original timestep embedding
                ) # this is where point voxel convolution is carried out, the point feature network preserves the order.
            )
            feats_list.append((features, coords)) # t_emb is always the same

        # exit(0)
        # Output MLP layers
        output = self.classifier(features)

        if ret_feats:
            return output, feats_list # return intermediate features 

        return output


class PVCNN2(PVCNN2Base):
    # exact same configuration from PVD: https://github.com/alexzhou907/PVD/blob/9747265a5f141e5546fd4f862bfa66aa59f1bd33/train_completion.py#L375
    # conv_configs, sa_configs
    # conv_configs: (out_ch, num_blocks, voxel_reso), sa_configs: (num_centers, radius, num_neighbors, out_channels)
    sa_blocks = [
        ((32, 2, 32), (1024, 0.1, 32, (32, 64))), # the first is out_channels, num_blocks, voxel_resolution
        ((64, 3, 16), (256, 0.2, 32, (64, 128))),
        ((128, 3, 8), (64, 0.4, 32, (128, 256))),
        (None, (16, 0.8, 32, (256, 256, 512))),
    ]
    fp_blocks = [
        ((256, 256), (256, 3, 8)),
        ((256, 256), (256, 3, 8)),
        ((256, 128), (128, 2, 16)),
        ((128, 128, 64), (64, 2, 32)),
    ]

    def __init__(self, num_classes, embed_dim, use_att=True, dropout=0.1, extra_feature_channels=3, 
                 width_multiplier=1, voxel_resolution_multiplier=1):
        super().__init__(
            num_classes=num_classes, embed_dim=embed_dim, use_att=use_att,
            dropout=dropout, extra_feature_channels=extra_feature_channels,
            width_multiplier=width_multiplier, voxel_resolution_multiplier=voxel_resolution_multiplier
        )