HDM-interaction-recon / model /projection_model.py
xiexh20's picture
add hdm demo v1
2fd6166
raw
history blame
12.1 kB
from typing import Optional, Union
import torch
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
from diffusers import ModelMixin
from pytorch3d.implicitron.dataset.data_loader_map_provider import FrameData
from pytorch3d.renderer import PointsRasterizationSettings, PointsRasterizer
from pytorch3d.renderer.cameras import CamerasBase
from pytorch3d.structures import Pointclouds
from torch import Tensor
from .feature_model import FeatureModel
from .model_utils import compute_distance_transform
SchedulerClass = Union[DDPMScheduler, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]
class PointCloudProjectionModel(ModelMixin):
def __init__(
self,
image_size: int,
image_feature_model: str,
use_local_colors: bool = True,
use_local_features: bool = True,
use_global_features: bool = False,
use_mask: bool = True,
use_distance_transform: bool = True,
predict_shape: bool = True,
predict_color: bool = False,
process_color: bool = False,
image_color_channels: int = 3, # for the input image, not the points
color_channels: int = 3, # for the points, not the input image
colors_mean: float = 0.5,
colors_std: float = 0.5,
scale_factor: float = 1.0,
# Rasterization settings
raster_point_radius: float = 0.0075, # point size
raster_points_per_pixel: int = 1, # a single point per pixel, for now
bin_size: int = 0,
model_name=None,
# additional arguments added by XH
load_sample_init=False,
sample_init_scale=1.0,
test_init_with_gtpc=False,
consistent_center=False, # from https://arxiv.org/pdf/2308.07837.pdf
voxel_resolution_multiplier: int=1,
predict_binary: bool=False, # predict a binary class label
lw_binary: float=1.0,
binary_training_noise_std: float=0.1,
dm_pred_type: str='epsilon', # diffusion prediction type
self_conditioning=False,
**kwargs,
):
super().__init__()
self.image_size = image_size
self.scale_factor = scale_factor
self.use_local_colors = use_local_colors
self.use_local_features = use_local_features
self.use_global_features = use_global_features
self.use_mask = use_mask
self.use_distance_transform = use_distance_transform
self.predict_shape = predict_shape # default False
self.predict_color = predict_color # default True
self.process_color = process_color
self.image_color_channels = image_color_channels
self.color_channels = color_channels
self.colors_mean = colors_mean
self.colors_std = colors_std
self.model_name = model_name
print("PointCloud Model scale factor:", self.scale_factor, 'Model name:', self.model_name)
self.predict_binary = predict_binary
self.lw_binary = lw_binary
self.self_conditioning = self_conditioning
# Types of conditioning that are used
self.use_local_conditioning = self.use_local_colors or self.use_local_features or self.use_mask
self.use_global_conditioning = self.use_global_features
self.kwargs = kwargs
# Create feature model
self.feature_model = FeatureModel(image_size, image_feature_model)
# Input size
self.in_channels = 3 # 3 for 3D point positions
if self.use_local_colors: # whether color should be an input
self.in_channels += self.image_color_channels
if self.use_local_features:
self.in_channels += self.feature_model.feature_dim
if self.use_global_features:
self.in_channels += self.feature_model.feature_dim
if self.use_mask:
self.in_channels += 2 if self.use_distance_transform else 1
if self.process_color:
self.in_channels += self.color_channels # point color added to input or not, default False
if self.self_conditioning:
self.in_channels += 3 # add self conditioning
self.in_channels = self.add_extra_input_chennels(self.in_channels)
if self.model_name in ['pc2-diff-ho-sepsegm', 'diff-ho-attn']:
self.in_channels += 2 if self.use_distance_transform else 1
# Output size
self.out_channels = 0
if self.predict_shape:
self.out_channels += 3
if self.predict_color:
self.out_channels += self.color_channels
if self.predict_binary:
print("Output binary classification score!")
self.out_channels += 1
# Save rasterization settings
self.raster_settings = PointsRasterizationSettings(
image_size=(image_size, image_size),
radius=raster_point_radius,
points_per_pixel=raster_points_per_pixel,
bin_size=bin_size,
)
def add_extra_input_chennels(self, input_channels):
return input_channels
def denormalize(self, x: Tensor, /, clamp: bool = True):
x = x * self.colors_std + self.colors_mean
return torch.clamp(x, 0, 1) if clamp else x
def normalize(self, x: Tensor, /):
x = (x - self.colors_mean) / self.colors_std
return x
def get_global_conditioning(self, image_rgb: Tensor):
global_conditioning = []
if self.use_global_features:
global_conditioning.append(self.feature_model(image_rgb,
return_cls_token_only=True)) # (B, D)
global_conditioning = torch.cat(global_conditioning, dim=1) # (B, D_cond)
return global_conditioning
def get_local_conditioning(self, image_rgb: Tensor, mask: Tensor):
"""
compute per-point conditioning
Parameters
----------
image_rgb: (B, 3, 224, 224), values normalized to 0-1, background is masked by the given mask
mask: (B, 1, 224, 224), or (B, 2, 224, 224) for h+o
"""
local_conditioning = []
# import pdb; pdb.set_trace()
if self.use_local_colors: # XH: default True
local_conditioning.append(self.normalize(image_rgb))
if self.use_local_features: # XH: default True
local_conditioning.append(self.feature_model(image_rgb)) # I guess no mask here? feature model: 'vit_small_patch16_224_mae'
if self.use_mask: # default True
local_conditioning.append(mask.float())
if self.use_distance_transform: # default True
if not self.use_mask:
raise ValueError('No mask for distance transform?')
if mask.is_floating_point():
mask = mask > 0.5
local_conditioning.append(compute_distance_transform(mask))
local_conditioning = torch.cat(local_conditioning, dim=1) # (B, D_cond, H, W)
return local_conditioning
@torch.autocast('cuda', dtype=torch.float32)
def surface_projection(
self, points: Tensor, camera: CamerasBase, local_features: Tensor,
):
B, C, H, W, device = *local_features.shape, local_features.device
R = self.raster_settings.points_per_pixel
N = points.shape[1]
# Scale camera by scaling T. ASSUMES CAMERA IS LOOKING AT ORIGIN!
camera = camera.clone()
camera.T = camera.T * self.scale_factor
# Create rasterizer
rasterizer = PointsRasterizer(cameras=camera, raster_settings=self.raster_settings)
# Associate points with features via rasterization
fragments = rasterizer(Pointclouds(points)) # (B, H, W, R)
fragments_idx: Tensor = fragments.idx.long()
visible_pixels = (fragments_idx > -1) # (B, H, W, R)
points_to_visible_pixels = fragments_idx[visible_pixels]
# Reshape local features to (B, H, W, R, C)
local_features = local_features.permute(0, 2, 3, 1).unsqueeze(-2).expand(-1, -1, -1, R, -1) # (B, H, W, R, C)
# Get local features corresponding to visible points
local_features_proj = torch.zeros(B * N, C, device=device)
# local feature includes: raw RGB color, image features, mask, distance transform
local_features_proj[points_to_visible_pixels] = local_features[visible_pixels]
local_features_proj = local_features_proj.reshape(B, N, C)
return local_features_proj
def point_cloud_to_tensor(self, pc: Pointclouds, /, normalize: bool = False, scale: bool = False):
"""Converts a point cloud to a tensor, with color if and only if self.predict_color"""
points = pc.points_padded() * (self.scale_factor if scale else 1)
if self.predict_color and pc.features_padded() is not None: # normalize color, not point locations
colors = self.normalize(pc.features_padded()) if normalize else pc.features_padded()
return torch.cat((points, colors), dim=2)
else:
return points
def tensor_to_point_cloud(self, x: Tensor, /, denormalize: bool = False, unscale: bool = False):
points = x[:, :, :3] / (self.scale_factor if unscale else 1)
if self.predict_color:
colors = self.denormalize(x[:, :, 3:]) if denormalize else x[:, :, 3:]
return Pointclouds(points=points, features=colors)
else:
assert x.shape[2] == 3
return Pointclouds(points=points)
def get_input_with_conditioning(
self,
x_t: Tensor,
camera: Optional[CamerasBase],
image_rgb: Optional[Tensor],
mask: Optional[Tensor],
t: Optional[Tensor],
):
""" Extracts local features from the input image and projects them onto the points
in the point cloud to obtain the input to the model. Then extracts global
features, replicates them across points, and concats them to the input.
image_rgb: masked background
XH: why there is no positional encoding as described by the supp??
"""
B, N = x_t.shape[:2]
# Initial input is the point locations (and colors if and only if predicting color)
x_t_input = self.get_coord_feature(x_t)
# Local conditioning
if self.use_local_conditioning:
# Get local features and check that they are the same size as the input image
local_features = self.get_local_conditioning(image_rgb=image_rgb, mask=mask) # concatenate RGB + mask + RGB feature + distance transform
if local_features.shape[-2:] != image_rgb.shape[-2:]:
raise ValueError(f'{local_features.shape=} and {image_rgb.shape=}')
# Project local features. Here that we only need the point locations, not colors
local_features_proj = self.surface_projection(points=x_t[:, :, :3],
camera=camera, local_features=local_features) # (B, N, D_local)
x_t_input.append(local_features_proj)
# Global conditioning
if self.use_global_conditioning: # False
# Get and repeat global features
global_features = self.get_global_conditioning(image_rgb=image_rgb) # (B, D_global)
global_features = global_features.unsqueeze(1).expand(-1, N, -1) # (B, D_global, N)
x_t_input.append(global_features)
# Concatenate together all the pointwise features
x_t_input = torch.cat(x_t_input, dim=2) # (B, N, D)
return x_t_input
def get_coord_feature(self, x_t):
"""get coordinate feature, for model that uses separate model to predict binary, we use first 3 channels only"""
x_t_input = [x_t]
return x_t_input
def forward(self, batch: FrameData, mode: str = 'train', **kwargs):
""" The forward method may be defined differently for different models. """
raise NotImplementedError()