import torch from ram import get_transform, inference_ram, inference_tag2text from ram.models import ram, tag2text ram_checkpoint = "./ram_swin_large_14m.pth" tag2text_checkpoint = "./tag2text_swin_14m.pth" image_size = 384 device = "cuda" if torch.cuda.is_available() else "cpu" @torch.no_grad() def inference(raw_image, specified_tags, tagging_model_type, tagging_model, transform): print(f"Start processing, image size {raw_image.size}") image = transform(raw_image).unsqueeze(0).to(device) if tagging_model_type == "RAM": res = inference_ram(image, tagging_model) tags = res[0].strip(' ').replace(' ', ' ') tags_chinese = res[1].strip(' ').replace(' ', ' ') print("Tags: ", tags) print("标签: ", tags_chinese) return tags, tags_chinese else: res = inference_tag2text(image, tagging_model, specified_tags) tags = res[0].strip(' ').replace(' ', ' ') caption = res[2] print(f"Tags: {tags}") print(f"Caption: {caption}") return tags, caption def inference_with_ram(img): return inference(img, None, "RAM", ram_model, transform) def inference_with_t2t(img, input_tags): return inference(img, input_tags, "Tag2Text", tag2text_model, transform) if __name__ == "__main__": import gradio as gr # get transform and load models transform = get_transform(image_size=image_size) ram_model = ram(pretrained=ram_checkpoint, image_size=image_size, vit='swin_l').eval().to(device) tag2text_model = tag2text( pretrained=tag2text_checkpoint, image_size=image_size, vit='swin_b').eval().to(device) # build GUI def build_gui(): description = """
Recognize Anything Model

Welcome to the Recognize Anything Model / Tag2Text Model demo!

  • Recognize Anything Model: Upload your image to get the English and Chinese tags!
  • Tag2Text Model: Upload your image to get the tags and caption! (Optional: Specify tags to get the corresponding caption.)
  • More over: Combine with Grounded-SAM, you can get boxes and masks! Please run this notebook to try out!

    Great thanks to Ma Jinyu, the major contributor of this demo!

    """ # noqa article = """

    RAM and Tag2Text are trained on open-source datasets, and we are persisting in refining and iterating upon it.
    Recognize Anything: A Strong Image Tagging Model | Tag2Text: Guiding Language-Image Model via Image Tagging

    """ # noqa with gr.Blocks(title="Recognize Anything Model") as demo: ############### # components ############### gr.HTML(description) with gr.Tab(label="Recognize Anything Model"): with gr.Row(): with gr.Column(): ram_in_img = gr.Image(type="pil") with gr.Row(): ram_btn_run = gr.Button(value="Run") try: ram_btn_clear = gr.ClearButton() except AttributeError: # old gradio does not have ClearButton, not big problem ram_btn_clear = None with gr.Column(): ram_out_tag = gr.Textbox(label="Tags") ram_out_biaoqian = gr.Textbox(label="标签") gr.Examples( examples=[ ["images/demo1.jpg"], ["images/demo2.jpg"], ["images/demo4.jpg"], ], fn=inference_with_ram, inputs=[ram_in_img], outputs=[ram_out_tag, ram_out_biaoqian], cache_examples=True ) with gr.Tab(label="Tag2Text Model"): with gr.Row(): with gr.Column(): t2t_in_img = gr.Image(type="pil") t2t_in_tag = gr.Textbox(label="User Specified Tags (Optional, separated by comma)") with gr.Row(): t2t_btn_run = gr.Button(value="Run") try: t2t_btn_clear = gr.ClearButton() except AttributeError: # old gradio does not have ClearButton, not big problem t2t_btn_clear = None with gr.Column(): t2t_out_tag = gr.Textbox(label="Tags") t2t_out_cap = gr.Textbox(label="Caption") gr.Examples( examples=[ ["images/demo4.jpg", ""], ["images/demo4.jpg", "power line"], ["images/demo4.jpg", "track, train"], ], fn=inference_with_t2t, inputs=[t2t_in_img, t2t_in_tag], outputs=[t2t_out_tag, t2t_out_cap], cache_examples=True ) gr.HTML(article) ############### # events ############### # run inference ram_btn_run.click( fn=inference_with_ram, inputs=[ram_in_img], outputs=[ram_out_tag, ram_out_biaoqian] ) t2t_btn_run.click( fn=inference_with_t2t, inputs=[t2t_in_img, t2t_in_tag], outputs=[t2t_out_tag, t2t_out_cap] ) # clear if ram_btn_clear is not None: ram_btn_clear.add([ram_in_img, ram_out_tag, ram_out_biaoqian]) if t2t_btn_clear is not None: t2t_btn_clear.add([t2t_in_img, t2t_in_tag, t2t_out_tag, t2t_out_cap]) return demo build_gui().launch(enable_queue=True)