summary / llm.py
xsestech's picture
Created app
d5c679f verified
raw
history blame contribute delete
505 Bytes
from llama_cpp import Llama
def get_llm(model_path: str = "models/Meta-Llama-3.1-8B-Instruct-IQ4_XS.gguf") -> Llama:
return Llama(
model_path=model_path,
n_gpu_layers=-1,
)
def summarize_transcript(llm: Llama, transcript: str) -> str:
summary = llm.create_chat_completion(
messages=[
{
"role": "user",
"content": f"Summarize the following video transcript: {transcript}",
}
]
)
return summary