Spaces:
Runtime error
Runtime error
File size: 10,711 Bytes
54199b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn.utils.rnn import pad_sequence
try:
import torch.distributed.nn
from torch import distributed as dist
has_distributed = True
except ImportError:
has_distributed = False
try:
import horovod.torch as hvd
except ImportError:
hvd = None
def gather_features(
image_features,
text_features,
local_loss=False,
gather_with_grad=False,
rank=0,
world_size=1,
use_horovod=False
):
assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.'
if use_horovod:
assert hvd is not None, 'Please install horovod'
if gather_with_grad:
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
else:
with torch.no_grad():
all_image_features = hvd.allgather(image_features)
all_text_features = hvd.allgather(text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features = list(all_image_features.chunk(world_size, dim=0))
gathered_text_features = list(all_text_features.chunk(world_size, dim=0))
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
else:
# We gather tensors from all gpus
if gather_with_grad:
all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0)
all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0)
else:
gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)]
gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)]
dist.all_gather(gathered_image_features, image_features)
dist.all_gather(gathered_text_features, text_features)
if not local_loss:
# ensure grads for local rank when all_* features don't have a gradient
gathered_image_features[rank] = image_features
gathered_text_features[rank] = text_features
all_image_features = torch.cat(gathered_image_features, dim=0)
all_text_features = torch.cat(gathered_text_features, dim=0)
return all_image_features, all_text_features
class ClipLoss(nn.Module):
def __init__(
self,
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__()
self.local_loss = local_loss
self.gather_with_grad = gather_with_grad
self.cache_labels = cache_labels
self.rank = rank
self.world_size = world_size
self.use_horovod = use_horovod
# cache state
self.prev_num_logits = 0
self.labels = {}
def get_ground_truth(self, device, num_logits) -> torch.Tensor:
# calculated ground-truth and cache if enabled
if self.prev_num_logits != num_logits or device not in self.labels:
labels = torch.arange(num_logits, device=device, dtype=torch.long)
if self.world_size > 1 and self.local_loss:
labels = labels + num_logits * self.rank
if self.cache_labels:
self.labels[device] = labels
self.prev_num_logits = num_logits
else:
labels = self.labels[device]
return labels
def get_logits(self, image_features, text_features, logit_scale):
if self.world_size > 1:
all_image_features, all_text_features = gather_features(
image_features, text_features,
self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod)
if self.local_loss:
logits_per_image = logit_scale * image_features @ all_text_features.T
logits_per_text = logit_scale * text_features @ all_image_features.T
else:
logits_per_image = logit_scale * all_image_features @ all_text_features.T
logits_per_text = logits_per_image.T
else:
logits_per_image = logit_scale * image_features @ text_features.T
logits_per_text = logit_scale * text_features @ image_features.T
return logits_per_image, logits_per_text
def forward(self, image_features, text_features, logit_scale, output_dict=False):
device = image_features.device
logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
labels = self.get_ground_truth(device, logits_per_image.shape[0])
total_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
return total_loss
class PreferenceLoss(nn.Module):
def forward(self, logits_per_image, num_images, labels):
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999)
ce_loss = F.cross_entropy(paired_logits, labels)
return ce_loss
class HPSLoss(nn.Module):
def forward(self, text_logits, labels):
device = text_logits.device
text_0_logits, text_1_logits = text_logits.chunk(2, dim=-1)
label_0, label_1 = labels.chunk(2, dim=-1)
index = torch.arange(text_0_logits.shape[0], device=device, dtype=torch.long)
text_0_logits = text_0_logits[index, index]
text_1_logits = text_1_logits[index, index]
text_logits = torch.stack([text_0_logits, text_1_logits], dim=-1)
text_0_labels = torch.zeros(text_logits.shape[0], device=device, dtype=torch.long)
text_1_labels = text_0_labels + 1
text_0_loss = torch.nn.functional.cross_entropy(text_logits, text_0_labels, reduction="none")
text_1_loss = torch.nn.functional.cross_entropy(text_logits, text_1_labels, reduction="none")
text_loss = label_0 * text_0_loss + label_1 * text_1_loss
# absolute_example_weight = 1 / num_per_prompt
# denominator = absolute_example_weight.sum()
# weight_per_example = absolute_example_weight / denominator
# text_loss *= weight_per_example
text_loss = text_loss.sum()
return text_loss
class RankingLoss(nn.Module):
def forward(self, logits_per_image, num_images, labels, margin = 1.0):
paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))]
label_list = [label for label in labels.split(num_images.tolist())]
# ranked_logits = [torch.index_select(paired_logits_list[i], 0, rank) for i, rank in enumerate(label_list)]
paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-1)
padded_labels = pad_sequence(label_list, batch_first=True, padding_value=10)
# regulized_logits = torch.log(torch.sigmoid(paired_logits))
diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
# diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2)
# diff_label = torch.clamp(padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2), min=-1, max=1)
diff_label = - (padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2))
mask = torch.triu(torch.ones(diff.shape[1], diff.shape[1]), diagonal=1).bool().detach()
loss = torch.clamp(margin - torch.mul(diff[:, ~mask],diff_label[:,~mask]), min=0).mean()
return loss
class CoCaLoss(ClipLoss):
def __init__(
self,
caption_loss_weight,
clip_loss_weight,
pad_id=0, # pad_token for open_clip custom tokenizer
local_loss=False,
gather_with_grad=False,
cache_labels=False,
rank=0,
world_size=1,
use_horovod=False,
):
super().__init__(
local_loss=local_loss,
gather_with_grad=gather_with_grad,
cache_labels=cache_labels,
rank=rank,
world_size=world_size,
use_horovod=use_horovod
)
self.clip_loss_weight = clip_loss_weight
self.caption_loss_weight = caption_loss_weight
self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id)
def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False):
clip_loss = super().forward(image_features, text_features, logit_scale)
clip_loss = self.clip_loss_weight * clip_loss
caption_loss = self.caption_loss(
logits.permute(0, 2, 1),
labels,
)
caption_loss = caption_loss * self.caption_loss_weight
if output_dict:
return {"contrastive_loss": clip_loss, "caption_loss": caption_loss}
return clip_loss, caption_loss
class DistillClipLoss(ClipLoss):
def dist_loss(self, teacher_logits, student_logits):
return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0)
def forward(
self,
image_features,
text_features,
logit_scale,
dist_image_features,
dist_text_features,
dist_logit_scale,
output_dict=False,
):
logits_per_image, logits_per_text = \
self.get_logits(image_features, text_features, logit_scale)
dist_logits_per_image, dist_logits_per_text = \
self.get_logits(dist_image_features, dist_text_features, dist_logit_scale)
labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0])
contrastive_loss = (
F.cross_entropy(logits_per_image, labels) +
F.cross_entropy(logits_per_text, labels)
) / 2
distill_loss = (
self.dist_loss(dist_logits_per_image, logits_per_image) +
self.dist_loss(dist_logits_per_text, logits_per_text)
) / 2
if output_dict:
return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss}
return contrastive_loss, distill_loss
|